
Faloutsos SCS 15-415

1

CMU SCS

Faloutsos SCS 15-415 #1

Carnegie Mellon Univ.

Dept. of Computer Science

15-415 - Database Applications

Concurrency Control

Part 2 (R&G ch. 17)

CMU SCS

Faloutsos SCS 15-415 #2

Outline

• conflict/view serializability

• Two-phase locking (2PL); strict 2PL (==
2PL-C, for „Commit‟)

• deadlocks prevention & detection

• Locking granularity

• Tree locking protocols

• Phantoms & predicate locking

CMU SCS

Faloutsos SCS 15-415 #3

Review questions

• conflict serializability?

• 2PL theorem?

• what is strict 2PL? why do we need it?

– „dirty read‟?

– cascading aborts?

• who generates the lock requests?

CMU SCS

Faloutsos SCS 15-415 #4

T1

Read(N)

T2

Read(N)

N=N-1

N= N-1

Write(N)

Write(N)

Not in book: „Lost update‟ problem

time

CMU SCS

Faloutsos SCS 15-415 #5

Major conclusions so far:

• (strict) 2PL: extremely popular

• Deadlock may still happen

– detection: wait-for graph

– prevention: abort some xacts, defensively

• philosophically: concurrency control uses:

– locks

– and aborts

CMU SCS

Faloutsos SCS 15-415 #6

Outline

• conflict/view serializability

• Two-phase locking (2PL); strict 2PL (==
2PL-C, for „Commit‟)

• deadlocks prevention & detection

• Locking granularity

• Tree locking protocols

• Phantoms & predicate locking

Faloutsos SCS 15-415

2

CMU SCS

Faloutsos SCS 15-415 #7

Lock granularity?

- lock granularity

- field? record? page? table?

- Pros and cons?

- (Ideally, each transaction should obtain a few

locks)

CMU SCS

Faloutsos SCS 15-415 #8

Multiple granularity

• Eg:

attr1 attr1attr2

record-nrecord2record1

Table2
Table1

DB

CMU SCS

Faloutsos SCS 15-415 #9

What would you do?

• T1: read Smith‟s salary,

• while T2: give 10% raise to everybody

• what locks should they obtain?

record-nrecord2record1

Table2Table1

DB

CMU SCS

Faloutsos SCS 15-415 #10

What types of locks?

• X/S locks for leaf level +

• „intent‟ locks, for higher levels

CMU SCS

Faloutsos SCS 15-415 #11

What types of locks?

• X/S locks for leaf level +

• „intent‟ locks, for higher levels

• IS: intent to obtain S-lock underneath

• IX: intent X-lock ...

• S: shared lock for this level

• X: ex- lock for this level

• SIX: shared lock here; + IX

CMU SCS

Faloutsos SCS 15-415 #12

Protocol

- each xact obtains appropriate lock at highest

level

- proceeds to desirable lower levels

Faloutsos SCS 15-415

3

CMU SCS

Faloutsos SCS 15-415 #13

Compatibility matrix

T2 wants

T1 has
IS IX S SIX X

IS

IX

S

SIX

X

CMU SCS

Faloutsos SCS 15-415 #14

Compatibility matrix

T2 wants

T1 has
IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y N

CMU SCS

Faloutsos SCS 15-415 #15

Compatibility matrix

T2 wants

T1 has
IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y

Y N N N

N

CMU SCS

Faloutsos SCS 15-415 #16

Compatibility matrix

T2 wants

T1 has
IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y

Y

Y

N N

N N

N

N

CMU SCS

Faloutsos SCS 15-415 #17

Compatibility matrix

T2 wants

T1 has
IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y

Y

Y

N N

N

N N

N

N

N

N

CMU SCS

Faloutsos SCS 15-415 #18

Multiple Granularity Lock

Protocol

• Each Xact: lock root.

• To get S or IS lock on a node, must hold at least

IS on parent node.

– What if Xact holds SIX on parent? S on parent?

• To get X or IX or SIX on a node, must hold at

least IX on parent node.

• Must release locks in bottom-up order.

Faloutsos SCS 15-415

4

CMU SCS

Faloutsos SCS 15-415 #19

Multiple granularity protocol

X

SIX

IXS

IS

stronger

(more privileges)

weaker

CMU SCS

Faloutsos SCS 15-415 #20

Examples – 2 level hierarchy

• T1 scans R, and updates a few tuples: Tuples

Tables

CMU SCS

Faloutsos SCS 15-415 #21

Examples – 2 level hierarchy

• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock

on tuples that are updated.

CMU SCS

Faloutsos SCS 15-415 #22

Examples – 2 level hierarchy

• T2: find avg salary of „Sales‟ employees

CMU SCS

Faloutsos SCS 15-415 #23

Examples – 2 level hierarchy

• T2: find avg salary of „Sales‟ employees

• T2 gets an IS lock on R, and repeatedly gets

an S lock on tuples of R.

CMU SCS

Faloutsos SCS 15-415 #24

Examples – 2 level hierarchy

• T3: sum of salaries of everybody in „R‟:

Faloutsos SCS 15-415

5

CMU SCS

Faloutsos SCS 15-415 #25

Examples – 2 level hierarchy

• T3: sum of salaries of everybody in „R‟:

• T3 gets an S lock on R.

• OR, T3 could behave like T2; can

use lock escalation to decide which.

– Lock escalation dynamically asks for

coarser-grained locks when too many

low level locks acquired

CMU SCS

Faloutsos SCS 15-415 #26

Multiple granularity

• Very useful in practice

• each xact needs only a few locks

CMU SCS

Faloutsos SCS 15-415 #27

Outline

• ...

• Locking granularity

• Tree locking protocols

• Phantoms & predicate locking

CMU SCS

Faloutsos SCS 15-415 #28

Locking in B+ Trees

• What about locking indexes?

CMU SCS

Faloutsos SCS 15-415 #29

Example B+tree

• T1 wants to insert in H

• T2 wants to insert in I

• why not plain 2PL?

G IH

FED

CB

A

....

....

root

CMU SCS

Faloutsos SCS 15-415 #30

Example B+tree

• T1 wants to insert in H

• T2 wants to insert in I

• why not plain 2PL?

• Because: X/S locks for

too long!

G IH

FED

CB

A

....

....

root

Faloutsos SCS 15-415

6

CMU SCS

Faloutsos SCS 15-415 #31

Two main ideas:

• „crabbing‟: get lock for parent; get lock for

child; release lock for parent (if „safe‟)

• „safe‟ nodes == nodes that won‟t split or

merge, ie:

– not full (on insertion)

– more than half-full (on deletion)

CMU SCS

Faloutsos SCS 15-415 #32

Example B+tree

• T1 wants to insert in H

• crabbing:

G IH

FED

CB

A

....

....

root

CMU SCS

Faloutsos SCS 15-415 #33

Example B+tree

• T1 wants to insert in H

G IH

FED

CB

A

....

....

root

CMU SCS

Faloutsos SCS 15-415 #34

Example B+tree

• T1 wants to insert in H

• (if „B‟ is „safe‟)

G IH

FED

CB

A

....

....

root

CMU SCS

Faloutsos SCS 15-415 #35

Example B+tree

• T1 wants to insert in H

• continue „crabbing‟

G IH

FED

CB

A

....

....

root

CMU SCS

Faloutsos SCS 15-415 #36

A Simple Tree Locking

Algorithm: “crabbing”

• Search: Start at root and go down; repeatedly,

– S lock child

– then unlock parent

• Insert/Delete: Start at root and go down,

obtaining X locks as needed. Once child is

locked, check if it is safe:

– If child is safe, release all locks on ancestors.

Faloutsos SCS 15-415

7

CMU SCS

Faloutsos SCS 15-415 #37

Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

CMU SCS

Answers:

1. Search 38*
– ‘crabbing’: S A, S B, U A, S C, U B, S D, U C

2. Delete 38*
– X A, X B, X C; U A, U B, X D, U C

3. Insert 45*
– X A, X B; U A, X C, X E, U C

4. Insert 25*
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415 #38

CMU SCS

Answers:

1. Search 38*
– ‘crabbing’: S A, S B, U A, S C, U B, S D, U C

2. Delete 38*
– X A, X B, X C; U A, U B, X D, U C

3. Insert 45*
– X A, X B; U A, X C, X E, U C

4. Insert 25*
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415 #39CAN WE DO BETTER?CAN WE DO BETTER?

CMU SCS

Can we do better?

• Yes [Bayer and Schkolnik]:

• Idea: hope that the leaf is „safe‟, and use S-

locks & crabbing to reach it, and verify

• (if false, do previous algo)

Faloutsos SCS 15-415 #40

CMU SCS

Can we do better?

• Yes [Bayer and Schkolnik]:

Faloutsos SCS 15-415 #41

Rudolf Bayer, Mario Schkolnick: Concurrency Rudolf Bayer, Mario Schkolnick: Concurrency

of Operations on B-Trees. Acta Inf. 9: 1-21 (1977)

CMU SCS

Faloutsos SCS 15-415 #42

A Better Tree Locking Algorithm

(From Bayer-Schkolnick paper)
• Search: As before.

• Insert/Delete:

– Set locks as if for search, get to leaf, and set X

lock on leaf.

– If leaf is not safe, release all locks, and restart

Xact using previous Insert/Delete protocol.

• Gambles that only leaf node will be modified; if

not, S locks set on the first pass to leaf are wasteful.

In practice, better than previous alg.

Faloutsos SCS 15-415

8

CMU SCS

Faloutsos SCS 15-415 #43

Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Do:
1) Delete 38*
2) Insert 25*

CMU SCS

Answers:

1. Delete 38*
– S A, S B, U A, S C, U B, X D, U C

2. Insert 25*
– S A, S B, U A, S F, U B, X H; U H;
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415 #44

CMU SCS

Notice:

• Textbook has a third variation, that uses

lock-upgrades (and may lead to deadlocks)

Faloutsos SCS 15-415 #45

CMU SCS

Faloutsos SCS 15-415 #46

Outline

• Locking granularity

• Tree locking protocols

• Phantoms & predicate locking

CMU SCS

Faloutsos SCS 15-415 #47

Dynamic Databases – The

“Phantom” Problem

• so far: only reads and updates – no

insertions/deletions

• with insertions/deletions, new problems:

CMU SCS

Faloutsos SCS 15-415 #48

The phantom problem

T1

select max(age) ...

where rating=1

T2

insert ... age=96 rating=1

select max(age) ...

where rating=1

time 71

96

Faloutsos SCS 15-415

9

CMU SCS

Faloutsos SCS 15-415 #49

Why?

• because T1 locked only *existing* records

– not ones under way!

• Solution?

CMU SCS

Faloutsos SCS 15-415 #50

Solution

theoretical solution:

• „predicate locking‟: e.g., lock all records

(current or incoming) with rating=1

– VERY EXPENSIVE

CMU SCS

Faloutsos SCS 15-415 #51

Solution

practical solution:

• index locking: if an index (on „rating‟)

exists, lock the appropriate entries (rating=1

in our case)

• otherwise, lock whole table (and thus block

insertions/deletions)

CMU SCS

Faloutsos SCS 15-415 #52

Transaction Support in SQL-92

• SERIALIZABLE – No phantoms, all reads
repeatable, no “dirty” (uncommited) reads.

• REPEATABLE READS – phantoms may
happen.

• READ COMMITTED – phantoms and
unrepeatable reads may happen

• READ UNCOMMITTED – all of them may
happen.

CMU SCS

Faloutsos SCS 15-415 #53

Transaction Support in SQL-92

• SERIALIZABLE : obtains all locks first;
plus index locks, plus strict 2PL

• REPEATABLE READS – as above, but no
index locks

• READ COMMITTED – as above, but S-
locks are released immediately

• READ UNCOMMITTED – as above, but
allowing „dirty reads‟ (no S-locks)

CMU SCS

Faloutsos SCS 15-415 #54

Transaction Support in SQL-92

SET TRANSACTION ISOLATION LEVEL

SERIALIZABLE READ ONLY

Defaults:

SERIALIZABLE

READ WRITE

isolation level

access mode

Faloutsos SCS 15-415

10

CMU SCS

Faloutsos SCS 15-415 #55

• Multiple granularity locking: leads to few

locks, at appropriate levels

• Tree-structured indexes:

– „crabbing‟ and „safe nodes‟

Summary

CMU SCS

Faloutsos SCS 15-415 #56

• “phantom problem”, if insertions/deletions

– (Predicate locking prevents phantoms)

– Index locking, or table locking

Summary

