

15-415 Databases

Project #1 (Index Library)

Assigned: Thursday, September 23, 2010

Proposal: Thursday, September 30, 2010

Key indexing or Datastore: Thursday, October 7, 2010

Record Indexing/Caching/Buffering: Thursday, October 14, 2010

Final Deadline: Thursday, October 21, 2010

Objective

This assignment asks you to design and implement an API to construct and maintain an index

and a data-store for structured data. Application programmers should be able to use your API to

conveniently and easily index their data and subsequently insert, find, and remove items while

maintaining the index. It should support both exact-match and range queries.

Furthermore, your library should be able to support multiple indexes, multiple indexes of the

same (or different) data based on different keys, and currency both within indexes and among

indexes. Keys should be composable from any tuple of fields. The index should be able to

enforce primary key constraints, if requested by trhe application programmer. Needless to say,

your library should make use of features of B+ and B* trees.

Teams

Teams of up to three people are permitted, with the caveat that each team member must (a) do

equal portions of the coding and design. This may be assessed by one-on-one or team interviews

and code reviews for grading purposes. Be prepared.

Technologies and Design Details

We are taking a very broad view of this project. You’re API can be a traditional UNIX local

library. It can be a traditional pair of a server program and a client library to support a network

database. It can be a Web Service, or a client library and a Web service. It must support use,

locally or remotely, by an application written using tools available on the Andrew UNIX

systems. It may be written in any available language and support any available language.

We are also giving you space to design your system. You may decide which of the B-tree family

features you’ll use, how you’ll do your locking, how you’ll format your data blocks, etc.

Performance

We do expect that you will have some performance-enhancing features, such as buffering and

caching, redistributions of keys and merging of pages, etc. Please be sure to document these as

part of your proposal and final deliverables as discussed below (Proposal; Final Deadline and

Deliverables). Think carefully about what you are promising about when data is stable, and

document this so the application programmer can plan accordingly. You might want to include

flush options, relaxed options, etc, in your design.

Input Data Format, Data Store

Your API should provide a function capable of bulk-loading a CSV file into an indexable data

store organized any way you’d like (think leaf-level blocks). The data store should be indexable

by more than one index based on more than one key field.

In addition to supplying the path to the CSV file, the caller should specify, at least, the field to

use as the key for the index. This field should be specified by field number, with the left most

field in the CSV file being numbered 0.

Indexes and Indexing

Your API should provide a function capable of building an index from an existing data store

created as described above (Input Data Format, Data Store). It should allow the user to specify

the key to be indexed. A key should be composable from any tuple of fields. If requested, the

API should be able to enforce primary key constraints, e.g. fail and notify upon encountering a

duplicate primary key. The user should be able to create multiple indexes for the same data store

to index by different keys.

The system should also be able to insert, remove, and find records by key. It should be able to

perform these operations both by exact-match and range queries.

Sample Application

I order to ensure that we can test your API, without doing a huge amount of programming

ourselves, you should include a sample application. It does not need to be interactive. But, it does

need to demonstrate to us that all of your features work. Please ensure that it demonstrates

multiple indexes and concurrency.

Proposal

By 11:59PM Thursday, September 30
th

, you should electronically submit a proposal containing

three documents:

(a) API documentation. This should explain to an application programmer how they’ll

use your API. You might choose to model it on UNIX “man pages” or Java’s API

documentation, for example.

(b) Design document. This should explain to us how you intend to structure your data

store, the features of your index tree, and how you’ll handle concurrency, buffering

and caching, and the stability of data.

(c) Detailed timeline: Who will do what and when to ensure a successful project?

Key Indexing or Datastore

By Thursday, October 7
th

, 2010, you should electronically submit a checkpoint to us,

demonstrating your current progress. We expect that, at the least, by this point in time, you

should have either (a) implemented your tree structure and be able to index keys, or (b)

implemented the feature to create your datastore from a CSV file.

Record Indexing, Caching, Buffering

By Thursday, October 14
th

, 2010, you should electronically submit a checkpoint to us,

demonstrating your current progress. We expect that, at the least, by this point in time, you

should have completed both your index and your data store and should be able to use your index

to locate, find, insert, and delete records, even if you cannot yet handle multiple indexes,

multiple datastores, or concurrency. We also expect that you’ll have most of your caching and or

buffering implemented, even if, for example, concurrency control is not yet complete.

Final Deadline and Deliverables

By, 11:59pm on Thursday, October 21, 2010, you should electronically submit the following:

(a) An exact copy of your original proposal

(b) A update document describing any changes you’ve made since your original proposal

(c) A current copy of your API documentation

(d) Your API implementation

(e) Your sample application, and sample data with which to test it. Depending upon your

implementation, this might also include query files

(f) Documentation about how to use your test program.

