Uninformed Search

Day 1 & 2 of Search

Russel & Norvig Chap. 3

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Search

« Examples of Search problems?
* The Oak Tree

e Informed versus Uninformed
— Heuristic versus Blind

A Search Problem

() o (o)
@. o
(& (1)
STAR a
(P 0 (o
* Find a path from START to GOAL
* Find the minimum number of transitions

Example

15 3
8 2 4 >
7 6

-~
AN W
N =~ =
oo W N

& /
START GOAL

State: Configuration of puzzle

Transitions: Up to 4 possible moves (up, down,
left, right)

Solvable in 22 steps (average)

But: 1.8 10° states (1.3 1072 states for the 15-
puzzle)

- Cannot represent set of states explicitly

Example: Robot Navigation

States =
positions in the map

Transitions =
allowed motions

N
x +— GOAL
W <
_/>‘< S
START

Navigation: Going from point START to
point GOAL given a (deterministic) map

Example Solution: Brushfire...

START

hedids Views

Other Real-Life Examples

wwwww

0E 0 O8O v» ae (
oeim

™ Overatios. [~ Overailoe

ssisy [Bumip

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

= RPN el — carmisge Rd

Hollyrood Rd~ Beeler St
Henton fgy

W WOOdfanu B

PVl RE i

Jmﬂgmmw

Playgruund

1S

Scheduling/Mahufécturing

http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

<
o
=
2
B
@

NE
el oud % arigorough Fid
Qb schenley Fark ,'

Golf Caurse

£

ahunhall Bd
Hopan St Baud

Route panmng Robot navigation

http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the
structure of a search problem

Scheulmg/Smence

http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

hedids Views

Other Real-Life Examples

wwwww

0E 0 O8O v» ae (
oeim

™ Overatios. [~ Overailoe

ssisy [Bumip

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

= RPN el — carmisge Rd

Hollyrood Rd~ Beeler St
Henton fgy

W WOOdfanu B

PVl RE i

Jmﬂgmmw

Playgruund

1S

Scheduling/Mahufécturing

http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

<
o
=
2
B
@

NE
el oud % arigorough Fid
Qb schenley Fark ,'

Golf Caurse

£

ahunhall Bd
Hopan St Baud

Route panmng Robot navigation

http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t have a clue when you're doing well
versus poorly!

Scheulmg/Smence

http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

10cm resolution
4km2=4 108 states

What we are not addressing (yet)

» Uncertainty/Chance - State and transitions are known and deterministic
« Game against adversary

 Multiple agents/Cooperation

» Continuous state space - For now, the set of states is discrete

Overview

Definition and formulation
Optimality, Completeness, and Complexity

Uninformed Search
— Breadth First Search
— Search Trees

— Depth First Search
— lterative Deepening

Informed Search
— Best First Greedy Search
— Heuristic Search, A*

A Search Problem:
Square World

> wWh~

Formulation

Q: Finite set of states

S C Q: Non-empty set of start states
GC Q: Non-empty set of goal states
succs: function Q 2 AQ)

succs(s) = Set of states that can be reached from s in one step

cost: function QxQ -> Positive Numbers
cost(s,s’) = Cost of taking a one-step transition from state s to state s’

Problem: Find a sequence {s;,...,S«} such that:

S{ES
ske G
S;,1 € succs(s)

+1

2 cost(s, s,) is the smallest among all possible
sequences (desirable but optional)

What about actions?

Q: Finite set of states

« SC Q: Non-empty set of start states
« GC Q: Non-empty set of goal states
« succs: function Q 2> A Q)

succs(s) = Set of states that can be reached from s in one step

« cost: function xQ - Positive Numbers
cost(s,s’) = Cost of taking a one-step transition from state s to state s’

* Problem: Find a sequence {s;,...,S«} such that:

Actions define transitions from states to states.
Example: Square World

Example

Q = {AA, AB, AC, AD, Al, BB, BC, BD, BI, ...}
S={AB} G={DD}

succs(AA) = {Al,BA}

cost(s,s’) = 1 for each action (transition)

Desirable Properties

Completeness: An algorithm is complete if it is
guaranteed to find a path if one exists

Optimality: The total cost of the path is the lowest
among all possible paths from start to goal

Time Complexity
Space Complexity

Breadth-First Search

STAR a

 Label all states that are 0 steps from S =
Call that set V,

B Breadth-First Search

— 1 step e G @
@. o
(& (0
STAR a
O 0 (&
» Label the successors of the states in V

that are not yet labelled > Set V, of states
that are 1 step away from the start

Breadth-First Search
— e A= - (=
O (o
(&) (1
STAR °
(p) o (=

 Label the successors of the states in V.
that are not yet labelled > Set V. of states
that are 1 step away from the start

Breadth-First Search

STAR °

 Label the successors of the states in V,
that are not yet labelled >Set of states
that are 1 step away from the start

wens Breadth-First Search

1 step
2 steps a
3 steps

— 4 ste?t/

STAR °

« Stop when goal is reached in the current
expansion set - goal can be reached in 4
steps

Recovering the Path

Record the predecessor state when labeling a new state

When | labeled GOAL, | was expanding the neighbors of
fso therefore fis the predecessor of GOAL

When | labeled 1, | was expanding the neighbors of r so
therefore ris the predecessor of f

Final solution: {START, e, r, f, GOAL}

Using Backpointers

a

.
*
.
.
*
o
.
o
.

LE I
e,
"
-,..
.
.
-
.
G
.
.
.

M *
“““
....
""""

« A backpointer previous(s) points to the node that
stored the state that was expanded to label s

* The path is recovered by following the
backpointers starting at the goal state

Example: Robot Navigation

States =
positions in the map

Transitions =
allowed motions

N
x +— GOAL
W <
_/>‘< S
START

Navigation: Going from point START to
point GOAL given a (deterministic) map

Breadth First Search

V, € S (the set of start states)
previous(START) := NULL
k< 0

while (V, is not a subset of the goal set and
V. is not empty) do
V... € empty set

For each state sin V,

For each state s’in succs(s)
If s”has not already been labeled
Set previous(s’) < s
Add s’into V,

k < k+1

if V. is empty signal FAILURE

else build the solution path thus:
Define S, = GOAL, and forall i <= k, define S; , = previous(S)

Ratiirn nath — I Q QCl

Properties

« BFS can handle multiple start and goal
states *what does multiple start mean?*

« Can work either by searching forward from
the start or backward for the goal
(forward/backward chaining)

* (Which way is better?)

» Guaranteed to find the lowest-cost path in
terms of number of transitions??

See maze example

Complexity

« N = Total number of states
« B = Average number of successors (branching factor)
« L =Length from start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space

BFS Breadth First
Search

Complexity

« N = Total number of states
« B = Average number of successors (branching factor)
« L =Length from start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space
BFS | Breadth First Y Y, If all O(min(N,BL)) | O(min(N,Bh))
Search trans. have
same cost

Bidirectional Search

BFS search simultaneously forward from
START and backward from GOAL

When do the two search meet?
What stopping criterion should be used?
Under what condition is it optimal?

Complexity

« N = Total number of states
« B = Average number of successors (branching factor)
« L = Length for start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space

BFS Breadth First
Search

BIBFS | Bi-directional
Breadth First
Search

Major savings when bidirectional search is possible because
2BM2 << BL

B=10,L=6 > 22,200 states generated vs. ~10

Complexity

« N = Total number of states
« B = Average number of successors (branching factor)
« L = Length for start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space
BFS Breadth First Y Y, if all O(min(N,BL)) O(min(N,BL))
Search trans. have

same cost

BIBFS | Bi-directional
Breadth First
Search

Major savings when bidirectional search is possible because
2BM2 << BL

B=10,L=6 > 22,200 states generated vs. ~10

Complexity

« N = Total number of states
« B = Average number of successors (branching factor)
« L = Length for start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space
BFS Breadth First Y Y, if all O(min(N,BL)) O(min(N,BL))
Search trans. have
same cost
BIBFS | Bi-directional Y Y, If all O(min(N,2B%2)) | O(min(N,2B%2))
Breadth First trans. have
Search same cost

Major savings when bidirectional search is possible because
2BM2 << BL

B=10,L=6 > 22,200 states generated vs. ~10

Complexity

* A note about island-driven search in general:

— What happens to complexity if you have L islands enroute to the

goal?
Algorithm Complete | Optimal | Time Space
BFS Breadth First Y Y, if all O(min(N,BL)) O(min(N,BL))
Search trans. have
same cost
BIBFS | Bi-directional Y Y, If all O(min(N,2B%2)) | O(min(N,2B%2))
Breadth First trans. have
Search same cost

Counting Transition Costs Instead of Transitions

22 2 @
OSSN

T2 e 5
3 a 9 G
START J a
4 5
C (e (0
5 (9)3

Counting Transition Costs Instead of Transitions

22 S @

STAR :
y 3
G
5 ()3

« BFS finds the shortest path in number of steps but
does not take into account transition costs

« Simple modification finds the least cost path

* New field: At iteration k, g(s) = least cost pathto sin k
or fewer steps

Uniform Cost Search

« Strategy to select state to expand next

» Use the state with the smallest value of g()
so far

» Use priority queue for efficient access to
minimum g at every iteration

Priority Queue

 Priority queue = data structure in which data of
the form (item, value) can be inserted and the
item of minimum value can be retrieved
efficiently

« Operations:
— Init (PQ): Initialize empty queue
— Insert (PQ, item, value): Insert a pair in the queue
— Pop (PQ): Returns the pair with the minimum value

 |n our case:
— item = state value = current cost ¢()

Complexity: O(log(number of pairs in PQ)) for
iInsertion and pop operations = very efficient

http://www.leekillough.com/heaps/ Knuth&Sedwick

Uniform Cost Search

« PQ = Current set of evaluated states

« Value (priority) of state = ¢g(s) = current cost
of path to s

« Basic iteration:
1. Pop the state s with the lowest path cost from PQ

2. Evaluate the path cost to all the successors of s
3. Add the successors of sto PQ

We add the successors of s that have
not yet been visited and we update the
cost of those currently in the queue

@
STAR
/ 3

PQ — {(START,O)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ = {(p,1) (d,3) (e,9)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ = {(d,3) (e,9) (q,16)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ — {(b,4) (9,5) (0511) (q,16)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of s tc
PQ

Important: We realized that
going to e through dis
cheaper than going to e

directly = the value of e is

updated from 9 to 5 and it

moves up in PQ

PQ = {(b,4) (e,5) (c,11) (q,

I 6)} lowest path cost from PQ

e

2. Evaluate the path cost to

all the successors of s
3. Add the successors of
PQ

S ic

PQ — {(9,5) (3,6) (0511) (q,16)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ = {(a,6) (h,6) (c,11) (r,14) (q,16)}

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of sto
PQ

PQ — {(h56) (0511) (rs14) (q516)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ = {(q,'lO) (0511) (r,14)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ = {(q,mQ

Important: We realized that
going to g through his
cheaper than going through p
- the value of g is updated
from 16 to 10 and it moves
up in PQ

ne
PQ
tto

f sto

PQ = {(0,11) (r,13)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

PQ = {(r,13)} 1. Pop the state s with the

lowest path cost from PQ
PQ _ {(f 1 8)} 2. Evaluate the path cost to
- 3 all the successors of s
3. Add the successors of sto
PQ

PQ = {(GOAL,23)}

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of sto
PQ

15 qQ Je. 3.

Final path: {START, d, e, h, q, r, f, GOAL)}

* This path is optimal in total cost even though it has more
transitions than the one found by BFS

« What should be the stopping condition?

» Under what conditions is UCS complete/optimal?

Example: Robot Navigation

States =
positions in the map

Transitions =
allowed motions

x +— GOAL

N Cost = sqrt(2)

. E
Cost =1

X

:

START S
Navigation: Going from point START to

point GOAL given a (deterministic) map

Q = Average size of the priority queue

Complexity

N = Total number of states
B = Average number of successors (branching factor)
L = Length for start to goal with smallest number of steps

Algorithm

Complete

Optimal

Time

Space

BFS

Breadth First
Search

BIBFS

Bi-directional
Breadth First
Search

UCS

Uniform Cost
Search

Complexity

N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue

Algorithm Complete | Optimal Time Space
BFS Breadth First Y Y, If all trans. | O(min(N,Bt)) O(min(N,Bt))
Search have same
cost
BIBFS | Bi-directional Y Y, If all trans. | O(min(N,2B%2)) O(min(N,2B%2))
Breadth First have same
Search cost
UCS Uniform Cost

Search

Complexity

N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
£ = average cost per link?

Algorithm Complete | Optimal Time Space
BFS Breadth First Y Y, If all trans. | O(min(N,Bt)) O(min(N,Bt))
Search have same
cost
BIBFS | Bi-directional Y Y, If all trans. | O(min(N,2B%2)) O(min(N,2B2))
Breadth First have same
Search cost
UCS Uniform Cost Y, Ifcost>e | Y, If cost >0 | O(log(Q)*min(N,B%¢)) | O(min(N,B%%))

Search

>0

Limitations of BFS

« Memory usage is O(B") in general
 Limitation in many problems in which the

states cannot be enumerated or stored
explicitly, e.g., large branching factor

 Alternative: Find a search strategy that
requires little storage for use in large
problems

Philosophical Limitation

» We cannot shoot for perfection, we want
good enough...

Depth First Search

“left first:” a @
START

START d 0

START 0 (b o)

START d b a Q 0
START d ¢

START dc a ARt

START d e @

START der

START derf Q 0
START derfc 0

START derfca
START d e r f GOAL

« General idea:

— Expand the most recently expanded node if it has
successors

— Otherwise backup to the previous node on the current path

DFS Implementation

DFS (s)
if s= GOAL
return SUCCESSi N 2 recUreive
else implementation, the program
For all s’ in suces(s) stack keeps track of the
DFS (s) states in the current path

return FAILURE

S IS current state being expanded,
starting with START

Depth First Search

START ()
START d
START d b @‘e

START db a p

START dc < May explore the same

START dc a %\. state over again. 0

START d e Potential problem?

START der D @ 0
START derf

START derfc

START derfca / Memory usage never

START derf GOAL exceeds maximum length of

a path through the graph

BFS: START
T —
a e p
__— \ / |
b c e r haq
7 PN
a a h f P q

r
| /N N\ |
f p q eGOALq
~ i i

c GOALQ a

a
Root: START state
Children of node containing state s: All states in succs(s)
In the worst case the entire tree is explored > O(BLm&)
Infinite branches if there are loops in the graph!

Complexity

« N = Total number of states

« B = Average number of successors (branching factor)

« L = Length for start to goal with smallest number of steps
« (C = Cost of optimal path

« Q= Average size of the priority queue

« Lmax = Length of longest path from START to any state

Algorithm Complete | Optimal Time Space

BFS Breadth First
Search

BIBFS | Bi-directional
Breadth First
Search

UCS Uniform Cost
Search

DFS Depth First
Search

Complexity
« N = Total number of states
« B = Average number of successors (branching factor)
« L = Length for start to goal with smallest number of steps
« (C = Cost of optimal path
« Q= Average size of the priority queue
« Lmax = Length of longest path from START to any state

Algorithm Complete | Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,Bt)) O(min(N,Bt))
Search trans. have

same cost

BIBFS | Bi-directional Y Y, If all O(min(N,2B2)) O(min(N,2B2))
Breadth First trans. have
Search same cost

UCS Uniform Cost Y (if cost > Y O(log(Q)*min(N,B¢%)) | O(min(N,BC%))
Search 0)

DFS Depth First
Search

Complexity
N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm Complete | Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,Bt)) O(min(N,Bt))
Search trans. have

same cost

BIBFS | Bi-directional Y Y, If all O(min(N,2B2)) O(min(N,2B2))
Breadth First trans. have
Search same cost

UCS Uniform Cost Y, lfcost> | Y, Ifcost> | O(log(Q)*min(N,B%%)) | O(min(N,BC%))
Search 0 0

DFS Depth First YR N O(Btmax) O(BL,..,)
Search

For graphs

without cycles

Complexity

Is this a problem:

« Lmax = Length of longest path from START to any state

Algorithm Complete | Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,Bt)) O(min(N,Bt))
Search trans. have

same cost

BIBFS | Bi-directional Y Y, If all O(min(N,2B2)) O(min(N,2B2))
Breadth First trans. have
Search same cost

UCS Uniform Cost Y, lfcost> | Y, Ifcost> | O(log(Q)*min(N,B%%)) | O(min(N,BC%))
Search 0 0

DFS Depth First YR N O(Btmax) O(BL,..,)
Search

For graphs

without cycles

DFS Limitation 1

* Need to prevent DFS from looping
« Avoid visiting the same states repeatedly

N

Because B? may be much larger
than the number of states d steps
away from the start

» PC-DFS (Path Checking DFS):

— Don't use a state that is already in the
current path

« MEMDFS (Memorizing DFS):

— Keep track of all the states expanded so
far. Do not expand any state twice

« Comparison PC-DFS vs. MEMDFS?

Complexity

« N = Total number of states

« B = Average number of successors (branching factor)

« L = Length for start to goal with smallest number of steps
« (C = Cost of optimal path

« Q= Average size of the priority queue

« Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First
Search

BIBFS | Bi- Direction.
BFS

UCS Uniform Cost
Search

PCDFS | Path Check
DFS

MEMD | Memorizing
FS DFS

Complexity

N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))
Search have same cost

BIBFS | Bi- Direction. Y Y, If all trans. O(Min(N,2B%2)) O(Min(N,2B%2))
BFS have same cost

UCS Uniform Cost | Y, If cost > Y, If cost >0 O(log(Q)*Min(N,B¢%) | O(Min(N,BC%))
Search 0)

PCDFS | Path Check
DFS

MEMD | Memorizing

FS DFS

Complexity
N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))
Search have same cost

BIBFS | Bi- Direction. Y Y, If all trans. O(Min(N,2B%2)) O(Min(N,2B%2))
BFS have same cost

UCS Uniform Cost | Y, If cost > Y, If cost >0 O(log(Q)*Min(N,B¢%) | O(Min(N,BC%))
Search 0)

PCDFS | Path Check Y N O(BLmax) O(BL,...)
DFS

MEMD | Memorizing Y N O(Min(N, BLmax)) O(Min(N, BLmax))

FS DFS

DFS Limitation 2

* Need to make DFS optimal

* |IDS (lterative Deepening Search):

“Depth-Limited
Search”

— Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

— If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

— If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

— Continue until a solution is found

lterative Deepening Search

 Sounds horrible: We need to run DFS

many times

 Actually not a problem:

O(LB'+(L-1)

7

A

Nodes generated
at depth 1

Nodes generated
at depth 2

« Compare B- and Btmax
« Optimal if transition costs are equal

B°+...+B"Y = O(BY)

A

Nodes generated at
depth L

lterative Deepening Search
(DFID)

 Memory usage same as DFS

« Computation cost comparable to BFS
even with repeated searches, especially
for large B.

« Example:
- B=10, L=5
— BFS: 111,111 expansions
— IDS: 123,456 expansions

Complexity
« N = Total number of states
« B = Average number of successors (branching factor)
« L = Length for start to goal with smallest number of steps
« (C = Cost of optimal path
« Q= Average size of the priority queue
« Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First
Search

BIBFS | Bi- Direction.
BFS

UCS Uniform Cost
Search

PCDFS | Path Check
DFS

MEMD | Memorizing

FS DFS

IDS lterative
Deepening

Complexity
N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))
Search have same cost

BIBFS | Bi- Direction. Y Y, If all trans. O(Min(N,2B%2)) O(Min(N,2B%2))
BFS have same cost

UCS Uniform Cost | Y, If cost > Y, If cost >0 O(log(Q)*Min(N,B¢%) | O(Min(N,BC%))
Search 0)

PCDFS | Path Check Y N O(BLmax) O(BL,,.,)
DFS

MEMD | Memorizing Y N O(Min(N, BLmax)) O(Min(N, BLmax))

FS DFS

IDS lterative

Deepening

Com

N = Total number of state

Plexity

B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,Bt)) O(Min(N,Bt))
Search have same cost

BIBFS | Bi- Direction. Y Y, If all trans. O(Min(N,2B2)) O(Min(N,2B2))
BFS have same cost

UCS Uniform Cost | Y, If cost > Y, If cost >0 O(log(Q)*Min(N, B | O(Min(N,BC%))
Search 0)

PCDFS | Path Check Y N O(Btmax) O(BL,,.,)
DFS

MEMD | Memorizing Y N O(Min(N,Btmax)) O(Min(N, Btmax))

FS DFS

IDS lterative Y Y, If all trans. O(B*) O(BL)

Deepening

have same cost

Summary

Basic search techniques: BFS, UCS,
PCDFS, MEMDES, DFID

Property of search algorithms:
Completeness, optimality, time and space
complexity

lterative deepening and bidirectional
search ideas

Trade-offs between the different
techniques and when they might be used

Some Challenges

 Driving directions
* Robot navigation in Wean Hall

» Adversarial games

— Tic Tac Toe
— Chess

