
Uninformed Search

Day 1 & 2 of Search

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Russel & Norvig Chap. 3



Search

• Examples of Search problems?
• The Oak Tree
• Informed versus Uninformed

– Heuristic versus Blind



A Search Problem
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Example

• State: Configuration of puzzle
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• State: Configuration of puzzle
• Transitions: Up to 4 possible moves (up, down, 

left, right)
• Solvable in 22 steps (average)
• But: 1.8 105 states (1.3 1012 states for the 15-

puzzle)
� Cannot represent set of states explicitly



Example: Robot Navigation

x GOAL

States = 
positions in the map

Transitions = 
allowed motions
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Navigation: Going from point START to 
point GOAL given a (deterministic) map



Example Solution: Brushfire…
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Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/ManufacturingScheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the 
structure of a search problem



Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/ManufacturingScheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t have a clue when you’re doing well 
versus poorly!



10cm resolution
4km2 = 4 108 states



What we are not addressing (yet)
• Uncertainty/Chance � State and transitions are known and deterministic
• Game against adversary
• Multiple agents/Cooperation
• Continuous state space � For now, the set of states is discrete



Overview

• Definition and formulation
• Optimality, Completeness, and Complexity
• Uninformed Search

– Breadth First Search
– Search Trees
– Depth First Search
– Iterative Deepening

• Informed Search
– Best First Greedy Search
– Heuristic Search, A*



A Search Problem:
Square World



Formulation
• Q: Finite set of states
• S Q: Non-empty set of start states
• G Q: Non-empty set of goal states
• succs: function Q � �(Q)

succs(s) = Set of states that can be reached from s in one step
• cost: function QxQ � Positive Numbers 

cost(s,s’) = Cost of taking a one-step transition from state s to state s’

⊆
⊆

• Problem: Find a sequence {s1,…,sK} such that:

1. s1 S
2. sK G
3. si+1 succs(si)   

4. Σ cost(si, si+1) is the smallest among all possible 
sequences (desirable but optional)

∈
∈
∈



What about actions?
• Q: Finite set of states
• S Q: Non-empty set of start states
• G Q: Non-empty set of goal states
• succs: function Q � �(Q)

succs(s) = Set of states that can be reached from s in one step
• cost: function QxQ � Positive Numbers 

cost(s,s’) = Cost of taking a one-step transition from state s to state s’

⊆
⊆

• Problem: Find a sequence {s1,…,sK} such that:

Actions define transitions from states to states. 
Example:  Square World



Example

• Q = {AA, AB, AC, AD, AI, BB, BC, BD, BI, …}
• S = {AB}   G = {DD}
• succs(AA) = {AI,BA}
• cost(s,s’) = 1 for each action (transition)



Desirable Properties
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• Completeness: An algorithm is complete if it is 
guaranteed to find a path if one exists

• Optimality: The total cost of the path is the lowest 
among all possible paths from start to goal

• Time Complexity
• Space Complexity
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Breadth-First Search
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• Label all states that are 0 steps from S �

Call that set Vo
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Breadth-First Search
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• Label the successors of the states in Vo
that are not yet labelled �Set V1 of states 
that are 1 step away from the start
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Breadth-First Search

b

a

d

h

e
c

f

START

GOAL
0 steps
1 step
2 steps

• Label the successors of the states in V1
that are not yet labelled �Set V2 of states 
that are 1 step away from the start
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Breadth-First Search
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0 steps
1 step
2 steps
3 steps

• Label the successors of the states in V2
that are not yet labelled �Set V3 of states 
that are 1 step away from the start
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Breadth-First Search
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0 steps
1 step
2 steps
3 steps
4 steps

• Stop when goal is reached in the current 
expansion set � goal can be reached in 4 
steps
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Recovering the Path
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• Record the predecessor state when labeling a new state
• When I labeled GOAL, I was expanding the neighbors of 

f so therefore f is the predecessor of GOAL
• When I labeled f, I was expanding the neighbors of r so 

therefore r is the predecessor of f
• Final solution: {START, e, r, f, GOAL}
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Using Backpointers
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• A backpointer previous(s) points to the node that 
stored the state that was expanded to label s

• The path is recovered by following the 
backpointers starting at the goal state
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Example: Robot Navigation

x GOAL

States = 
positions in the map

Transitions = 
allowed motions
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Navigation: Going from point START to 
point GOAL given a (deterministic) map



Breadth First Search
V0 � S (the set of start states)
previous(START) := NULL
k � 0

while (Vk is not a subset of the goal set and
Vk is not empty) do

Vk+1 � empty set
For each state s in VFor each state s in Vk

For each state s’ in succs(s)
If s’ has not already been labeled

Set previous(s’) � s
Add s’ into Vk+1

k � k+1

if Vk is empty signal FAILURE
else build the solution path thus: 

Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si)
Return path = {S1,.., Sk}



Properties

• BFS can handle multiple start and goal 
states *what does multiple start mean?*

• Can work either by searching forward from 
the start or backward for the goal the start or backward for the goal 
(forward/backward chaining)

• (Which way is better?)
• Guaranteed to find the lowest-cost path in 

terms of number of transitions??

See maze example



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length from start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length from start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))



Bidirectional Search
• BFS search simultaneously forward from 

START and backward from GOAL
• When do the two search meet?
• What stopping criterion should be used?
• Under what condition is it optimal?

V3

V’3

• Under what condition is it optimal?

START GOALV1
V’1V2

V’2



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

BIBFS Bi-directional BIBFS Bi-directional 
Breadth First 
Search

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because
2BL/2 << BL



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, if all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional BIBFS Bi-directional 
Breadth First 
Search

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because
2BL/2 << BL



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, if all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional Y Y, If all O(min(N,2BL/2)) O(min(N,2BL/2))BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because
2BL/2 << BL



Complexity
• A note about island-driven search in general: 

– What happens to complexity if you have L islands enroute to the 
goal?

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, if all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))
Search

same cost

BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))



Counting Transition Costs Instead of Transitions
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Counting Transition Costs Instead of Transitions
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• BFS finds the shortest path in number of steps but 
does not take into account transition costs

• Simple modification finds the least cost path
• New field: At iteration k, g(s) = least cost path to s in k

or fewer steps
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Uniform Cost Search

• Strategy to select state to expand next
• Use the state with the smallest value of g() 

so far
• Use priority queue for efficient access to • Use priority queue for efficient access to 

minimum g at every iteration



Priority Queue
• Priority queue = data structure in which data of 

the form (item, value) can be inserted and the 
item of minimum value can be retrieved 
efficiently

• Operations:
– Init (PQ): Initialize empty queue
– Insert (PQ, item, value): Insert a pair in the queue– Insert (PQ, item, value): Insert a pair in the queue
– Pop (PQ): Returns the pair with the minimum value

• In our case:
– item = state   value = current cost g()

Complexity: O(log(number of pairs in PQ)) for 
insertion and pop operations � very efficient

http://www.leekillough.com/heaps/   Knuth&Sedwick …. 



Uniform Cost Search
• PQ = Current set of evaluated states
• Value (priority) of state = g(s) = current cost 

of path to s
• Basic iteration:

1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

We add the successors of s that have 
not yet been visited and we update the 

cost of those currently in the queue



b

a

d

h

e
c

f

r

START

GOAL
2

1

3

1

9

8

2

2

4

9

5

5

5

4

1

p
q

r1

15

4

3

1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(START,0)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(p,1) (d,3) (e,9)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(d,3) (e,9) (q,16)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}
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going to e through d is 
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}

going to e through d is 
cheaper than going to e

directly � the value of e is 
updated from 9 to 5 and it 

moves up in PQ
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(e,5) (a,6) (c,11) (q,16)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(a,6) (h,6) (c,11) (r,14) (q,16)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(h,6) (c,11) (r,14) (q,16)}



b

a

d

h

e
c

f

START

GOAL
2

1

3
9

8

2

2

9

5

5

5

4

1

p
q

r1

15

4

54

3

1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(q,10) (c,11) (r,14)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(q,10) (c,11) (r,14)}
Important: We realized that 

going to q through h is 
cheaper than going through p
� the value of q is updated 
from 16 to 10 and it moves 

up in PQ
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PQ = {(c,11) (r,13)} 1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ
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PQ = {(r,13)} 1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(f,18)}
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1. Pop the state s with the 
lowest path cost from PQ

2. Evaluate the path cost to 
all the successors of s

3. Add the successors of s to 
PQ

PQ = {(GOAL,23)}
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Final path:  {START, d, e, h, q, r, f, GOAL}

• This path is optimal in total cost even though it has more 
transitions than the one found by BFS
• What should be the stopping condition?
• Under what conditions is UCS complete/optimal?



Example: Robot Navigation

x GOAL

States = 
positions in the map

Transitions = 
allowed motions

X

START

N

E

S

W

Navigation: Going from point START to 
point GOAL given a (deterministic) map

Cost = sqrt(2)

Cost = 1



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• Q = Average size of the priority queue

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

BIBFS Bi-directional 
Breadth First 
Search

UCS Uniform Cost 
Search



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue

Algorithm Complete Optimal Time SpaceAlgorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, If all trans. 
have same 
cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all trans. 
have same 
cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost 
Search



Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• ε = average cost per link?

Algorithm Complete Optimal Time SpaceAlgorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, If all trans. 
have same 
cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all trans. 
have same 
cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > ε
> 0

Y, If cost > 0 O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))



Limitations of BFS

• Memory usage is O(BL) in general
• Limitation in many problems in which the 

states cannot be enumerated or stored 
explicitly, e.g., large branching factorexplicitly, e.g., large branching factor

• Alternative: Find a search strategy that 
requires little storage for use in large 
problems



Philosophical Limitation

• We cannot shoot for perfection, we want 
good enough…



Depth First Search
“left first:”

START
START d
START d b
START d b a
START d c
START d c a
START d e
START d e r
START d e r f
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GOAL

START

• General idea: 
– Expand the most recently expanded node if it has 

successors
– Otherwise backup to the previous node on the current path

START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL

p
q

r



DFS Implementation
DFS (s)

if s = GOAL
return SUCCESS

else
For all s’ in succs(s)

In a recursive 
implementation, the program 

stack keeps track of the For all s’ in succs(s)
DFS (s’)

return FAILURE

stack keeps track of the 
states in the current path

s is current state being expanded, 
starting with START



Depth First Search

START
START d
START d b
START d b a
START d c
START d c a

b

a

d

h

e
c

f

START

GOAL

4

May explore the same 
state over again. 

Potential problem?
START d c a
START d e
START d e r
START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL

Memory usage never 
exceeds maximum length of 

a path through the graph

p
q

h

r
4Potential problem?



Search Tree Interpretation
START

d e p

r hb c e q

a a r h

f p q

f

e

p q

q

BFS: START

d e p

r hb c e q

a a r h

f p q

f

e

p q

q

DFS:

• Root: START state
• Children of node containing state s: All states in succs(s)
• In the worst case the entire tree is explored � O(BLmax)
• Infinite branches if there are loops in the graph!
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Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

BIBFS Bi-directional 
Breadth First 
Search

UCS Uniform Cost 
Search

DFS Depth First 
Search



Complexity

Algorithm Complete Optimal Time Space

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost 
Search

Y (if cost > 
0)

Y O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

DFS Depth First 
Search



Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,BL)) O(min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > 
0

Y, If cost > 
0

O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

DFS Depth First 
Search

Y N O(BLmax) O(BLmax)

For graphs 
without cycles



Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all O(min(N,BL)) O(min(N,BL))

Is this a  problem:

• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,BL)) O(min(N,BL))

BIBFS Bi-directional 
Breadth First 
Search

Y Y, If all 
trans. have 
same cost

O(min(N,2BL/2)) O(min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > 
0

Y, If cost > 
0

O(log(Q)*min(N,BC/ε)) O(min(N,BC/ε))

DFS Depth First 
Search

Y N O(BLmax) O(BLmax)

For graphs 
without cycles



DFS Limitation 1
• Need to prevent DFS from looping
• Avoid visiting the same states repeatedly 

• PC-DFS (Path Checking DFS):

Because Bd may be much larger 
than the number of states d steps 

away from the start

• PC-DFS (Path Checking DFS):
– Don’t use a state that is already in the 

current path

• MEMDFS (Memorizing DFS):
– Keep track of all the states expanded so 

far. Do not expand any state twice

• Comparison PC-DFS vs. MEMDFS?



Complexity

Algorithm Complete Optimal Time Space

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

BIBFS Bi- Direction. 
BFS

UCS Uniform Cost 
Search

PCDFS Path Check 
DFS

MEMD
FS

Memorizing 
DFS



Complexity

Algorithm Complete Optimal Time Space

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First 
Search

Y Y, If all trans. 
have same cost

O(Min(N,BL)) O(Min(N,BL))

BIBFS Bi- Direction. 
BFS

Y Y, If all trans. 
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > 
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check 
DFS

MEMD
FS

Memorizing 
DFS



Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

Y Y, If all trans. 
have same cost

O(Min(N,BL)) O(Min(N,BL))

BIBFS Bi- Direction. 
BFS

Y Y, If all trans. 
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > 
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check 
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing 
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))



DFS Limitation 2
• Need to make DFS optimal

• IDS (Iterative Deepening Search):
– Run DFS by searching only path of length 1 

(DFS stops if length of path is greater than 1)
– If that doesn’t find a solution, try again by 

“Depth-Limited 
Search”

– If that doesn’t find a solution, try again by 
running DFS on paths of length 2 or less

– If that doesn’t find a solution, try again by 
running DFS on paths of length 3 or less

– ………..
– Continue until a solution is found



Iterative Deepening Search

• Sounds horrible: We need to run DFS 
many times

• Actually not a problem:

O(LB1+(L-1)B2+…+BL) = O(BL)

• Compare BL and BLmax

• Optimal if transition costs are equal

O(LB +(L-1)B +…+B ) = O(B )

Nodes generated 
at depth 1

Nodes generated 
at depth 2

Nodes generated at 
depth L



Iterative Deepening Search 
(DFID)

• Memory usage same as DFS
• Computation cost comparable to BFS 

even with repeated searches, especially 
for large B.for large B.

• Example:
– B=10, L=5
– BFS: 111,111 expansions
– IDS: 123,456 expansions



Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First 

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

BIBFS Bi- Direction. 
BFS

UCS Uniform Cost 
Search

PCDFS Path Check 
DFS

MEMD
FS

Memorizing 
DFS

IDS Iterative 
Deepening



Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

Y Y, If all trans. 
have same cost

O(Min(N,B )) O(Min(N,B ))

BIBFS Bi- Direction. 
BFS

Y Y, If all trans. 
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > 
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check 
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing 
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))

IDS Iterative 
Deepening



Complexity

Algorithm Complete Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,BL))

• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

BFS Breadth First 
Search

Y Y, If all trans. 
have same cost

O(Min(N,B )) O(Min(N,B ))

BIBFS Bi- Direction. 
BFS

Y Y, If all trans. 
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost 
Search

Y, If cost > 
0

Y, If cost > 0 O(log(Q)*Min(N,BC/ε)
)

O(Min(N,BC/ε))

PCDFS Path Check 
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing 
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))

IDS Iterative 
Deepening

Y Y, If all trans. 
have same cost

O(BL) O(BL)



Summary

• Basic search techniques: BFS, UCS, 
PCDFS, MEMDFS, DFID

• Property of search algorithms: 
Completeness, optimality, time and space Completeness, optimality, time and space 
complexity

• Iterative deepening and bidirectional 
search ideas

• Trade-offs between the different 
techniques and when they might be used



Some Challenges

• Driving directions
• Robot navigation in Wean Hall
• Adversarial games

– Tic Tac Toe– Tic Tac Toe
– Chess


