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Basic Questions

• How to choose the attribute/value to split 

on at each level of the tree?

• When to stop splitting? When should a 

node be declared a leaf?

• If a leaf node is impure, how should the 

class label be assigned?

• If the tree is too large, how can it be 

pruned?



Pure and Impure Leaves and When 

to Stop Splitting - forced

All the data in the node comes from a 

single class �We declare the node to be 

a leaf and stop splitting. This leaf will 

output the class of the data it contains

Several data points have exactly the same 

attributes even though they are from 

different classes �We cannot split any 

further �We still declare the node to be a 

leaf, but it will output the class that is the 

majority of the classes in the node (in this 

example, ‘green crosses’).



Decision Tree Algorithm (Continuous Attributes)
• LearnTree(X,Y)
– Input: 

• Set X of R training vectors, each containing the values (x1,..,xM) of 
M attributes (X1,..,XM)

• A vector Y of R elements, where yj = class of the j
th datapoint

– If all the datapoints in X have the same class value y

• Return a leaf node that predicts y as output

– If all the datapoints in X have the same attribute value (x1,..,xM)

• Return a leaf node that predicts the majority of the class values in Y
as output

– Try all the possible attributes Xj and threshold t and choose the 
one, j*, for which IG(Y|Xj,t) is maximum

– XL, YL= set of datapoints for which xj* < t and corresponding 
classes

– XH, YH = set of datapoints for which xj* >= t and corresponding 
classes

– Left Child  LearnTree(XL,YL)

– Right Child  LearnTree(XH,YH)



Decision Trees So Far
• Given R observations from training data, each 
with M attributes X and a class attribute Y, 
construct a sequence of tests (decision tree) to 
predict the class attribute Y from the attributes X

• Basic strategy for defining the tests (“when to 
split”) � maximize the information gain on the 
training data set at each node of the tree

• Problems (next):
– Computational issues � How expensive is it to 
compute the IG

– The tree will end up being much too big � pruning

– Evaluating the tree on training data is dangerous �
overfitting



Side example with 

both discrete and 

continuous 

attributes: 

Predicting MPG 

(‘GOOD’ or ‘BAD’) 

from attributes:

Cylinders 

Horsepower

Acceleration

Maker (discrete)

Displacement



The Overfitting Problem: Example

• Suppose that, in an ideal world, class B is 
everything such that X2 >= 0.5 and class A is 
everything with X2 < 0.5

• Note that attribute X1 is irrelevant

• Seems like generating a decision tree would be 
trivial

Class B

Class A





The Overfitting Problem: Example

• However, we collect training examples from the 

perfect world through some imperfect observation 

device

• As a result, the training data is corrupted by noise.



The Overfitting Problem: Example

• Because of the noise, the resulting decision tree is 
far more complicated than it should be

• This is because the learning algorithm tries to 
classify all of the training set perfectly � This is a 
fundamental problem in learning: overfitting



The Overfitting Problem: Example

• The effect of overfitting is that the tree is 
guaranteed to classify the training data perfectly, 
but it may do a terrible job at classifying new test 
data.

• Example: (0.6,0.9) is classified as ‘A’

A



The Overfitting Problem: Example

• The effect of overfitting is that the tree is 
guaranteed to classify the training data perfectly, 
but it may do a terrible job at classifying new test 
data.

• Example: (0.6,0.9) is classified as ‘A’

A

It would be nice to identify 

automatically that splitting 

this node is stupid.

Possible criterion: figure 

out that splitting this node 

will lead to a “complicated”

tree suggesting noisy data



The Overfitting Problem: Example

• The effect of overfitting is that the tree is 
guaranteed to classify the training data perfectly, 
but it may do a terrible job at classifying new test 
data.

• Example: (0.6,0.9) is classified as ‘A’

A

Note that, even though the 

attribute X1 is completely 

irrelevant in the original 

distribution, it is used to 

make the decision at that 

node



Possible Overfitting Solutions

• Grow tree based on training data 

(unpruned tree)

• Prune the tree by removing useless nodes 

based on:

– Additional test data (not used for training)

– Statistical significance tests



Training Data

Unpruned decision tree 

from training data



Unpruned decision tree 

from training data



Training data

with the partitions induced 

by the decision tree

(Notice the tiny regions at 

the top necessary to 

correctly classify the ‘A’

outliers!)

Unpruned decision tree 

from training data



Unpruned decision tree 

from training data

Performance (% 

correctly classified)

Training: 100%

Test: 77.5%

Training data

Test data



Pruned decision tree 

from training data

Performance (% 

correctly classified)

Training: 95%

Test: 80%

Training data

Test data



Pruned decision tree from 

training data

Performance (% correctly 

classified)

Training: 80%

Test: 97.5%

Training data

Test data
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Using Test Data

Classification rate 

on training data

Classification rate 

on test data

In this region, the tree overfits the 

training data (including the noise!) and 

start doing poorly on the test data 
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Using Test Data

• General principle: As the complexity of the 
classifier increases (depth of the decision tree), 
the performance on the training data increases 
and the performance on the test data decreases 
when the classifier overfits the training data.

Classification rate 

on training data

Classification rate 

on test data

In this region, the tree overfits the 

training data (including the noise!) and 

start doing poorly on the test data 
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Basic Questions

• How to choose the attribute/value to split 

on at each level of the tree?

• When to stop splitting? When should a 

node be declared a leaf?

• If a leaf node is impure, how should the 

class label be assigned?

• If the tree is too large, how can it be 

pruned?



Decision Tree Pruning

• Construct the entire tree as before

• Starting at the leaves, recursively 
eliminate splits:

– Evaluate performance of the tree on test data 
(also called validation data, or hold out data 
set)

– Prune the tree if the classification 
performance increases by removing the split 

Prune node if 

classification 

performance 

on test set is 

greater for (2) 

than for (1)
(1) (2)



Possible Overfitting Solutions

• Grow tree based on training data 

(unpruned tree)

• Prune the tree by removing useless nodes 

based on:

– Additional test data (not used for training)

– Statistical significance tests



A Criterion to Detect Useless Splits
• The problem is that we split whenever the 
IG increases, but we never check if the 
change in entropy is statistically 
significant



A Criterion to Detect Useless Splits
• The problem is that we split whenever the 
IG increases, but we never check if the 
change in entropy is statistically 
significant

• Reasoning:

• The proportion of the data going to the left 
node is pL = (NAL + NBL)/(NA+NB) = 5/9

• The number of class A in 
the root node is NA = 2

• The number of class B in 
the root node is NB = 7

• The number of class A in 
the left node is NAL = 1

• The number of class B in 
the left node is NBL = 4
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A Criterion to Detect Useless Splits
• The problem is that we split whenever the 
IG increases, but we never check if the 
change in entropy is statistically 
significant

• Reasoning:

• The proportion of the data going to the left 
node is pL = (NAL + NBL)/(NA+NB) = 5/9

• Suppose now that the data is completely 
randomly distributed (i.e., it does not 
make sense to split):

• The expected number of class A in the 
left node would be N’AL = NA x pL = 10/9

• The expected number of class B in the 
left node would be N’ BL = NB x pL = 35/9

• Question:

• Are NA and NB sufficiently different from 
N’A and N’B. If not, it means that the split 
is not statistically significant and we 
should not split the root � The resulting 
children are not significantly different from 
what we would get by splitting a random 
distribution at the root node.

• The number of class A in 
the root node is NA = 2

• The number of class B in 
the root node is NB = 7

• The number of class A in 
the left node is NAL = 1

• The number of class B in 
the left node is NBL = 4



A Criterion to Detect Useless Splits
• Measure of statistically significance:

• K = (N’AL- NAL)
2/N’AL + (N’BL- NBL)

2/N’BL +

(N’AR- NAR)
2/N’AR + (N’BR- NBR)

2/N’BR 

K measures how much the split deviates from what we 

would get if the data where random

K small � The increase in IG of the split is not 

significant

In this example (primes are expected): K = 

(10/9 – 1)2/(10/9) +(35/9 – 4)2/(35/9) + …= 0.0321



χ2 Criterion: General Case

• Nij = Number of points from class i in child j

• N’ij = Number of points from class i in child j
assuming a random selection

• N’ij = Ni x Pj
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χ2 Criterion: General Case

N data points

NL data points NR data points
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Difference between the 

distribution of class i from the 

proposed split and the 

distribution from randomly 

drawing data points in the same 

proportions as the proposed split

Small  (Chi-square) values 

indicate low statistical 

significance � Remove the 

splits that are lower than a 

threshold Κ < t. 
Lower t � bigger trees 

(more overfitting). 

Larger t � smaller trees 

(less overfitting, but worse 

classification error).



Decision Tree Pruning

• Construct the entire tree as before

• Starting at the leaves, recursively 

eliminate splits:
– At a leaf NNNN:

• Compute the K value for NNNN and its parent PPPP.

• If the K values is lower than the threshold t:
– Eliminate all of the children of PPPP

– PPPP becomes a leaf

– Repeat until no more splits can be eliminated



K = 10.58

K = 0.0321

K = 0.83 The gains 

obtained by 

these splits are 

not significant



• By thresholding K we end up with the decision 
tree that we would expect (i.e., one that does not 
overfit the data)

• Note: The approach is presented with 
continuous attributes in this example but it works 
just as well with discrete attributes.



χ2 Pruning

• The test on K is a version of a standard 
statistical test, the χ2 (‘chi-square’) test.

• The value of t is retrieved from statistical 
tables. For example, K > t means that, with 
confidence 95%, the information gain due 
to the split is significant.

• If K < t, with high confidence, the 
information gain will be 0 over very large 
training samples  

– Reduces overfitting

– Eliminates irrelevant attributes



Example
Class Sepal 

Length 

(SL)

Sepal 

Width 

(SW)

Petal 

Length 

(PL)

Petal 

Width 

(PW)

Setosa 5.1 3.5 1.4 0.2

Setosa 4.9 3 1.4 0.2

Setosa 5.4 3.9 1.7 0.4

Versicolor 5.2 2.7 3.9 1.4

Versicolor 5 2 3.5 1

Versicolor 6 2.2 4 1

Virginica 6.4 2.8 5.6 2.1

Virginica 7.2 3 5.8 1.6

50 examples from each class



Full Decision Tree
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Pruning One Level



Pruning Two Levels



1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal length (PL)

P
et
al
 w

id
th
 (
P
W

)



Unpruned



Unpruned
27% probability 

that this is a 

“chance” node 

according to χ2

test.

Node should be 

pruned.



Pruned



Decision Trees

• Information Gain (IG) criterion for choosing 
splitting criteria at each level of the tree.

• Versions with continuous attributes and 
with discrete (categorical) attributes

• Basic tree learning algorithm leads to 
overfitting of the training data

• Pruning with: 

– Additional test data (not used for training)

– Statistical significance tests

• Example of inductive learning



But what if…

We don’t have labels / classes ?
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We don’t have labels / classes ?

Everything so far has been “supervised”

learning.  The algorithms get to see class 

labels.



But what if…

We don’t have labels / classes ?

Everything so far has been “supervised”

learning.  The algorithms get to see class 

labels.

We can do unsupervised learning too!

Called clustering.





































K-Means

• Pick cluster centers.

• Assign data to clusters.

• Find new cluster centers.

• Repeat.



K-Means

• Problems:

– Number of clusters?







K-Means

• Problems:

– Number of clusters?



K-Means

• Problems:

– Number of clusters?

– Starting positions?

• Remember hill-climbing?



Neat Algorithms / Paradigms

• Spectral Clustering
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• Spectral Clustering







Neat Algorithms / Paradigms

• Spectral Clustering

• k-Nearest Neighbors



Neat Algorithms / Paradigms

• Spectral Clustering

• k-Nearest Neighbors

• Hierarchical Agglomerative Clustering


