
Decision Trees & Neural Nets

Part II

Illah Nourbakhsh version

Basic Questions

• How to choose the attribute/value to split

on at each level of the tree?

• When to stop splitting? When should a

node be declared a leaf?

• If a leaf node is impure, how should the

class label be assigned?

• If the tree is too large, how can it be

pruned?

Pure and Impure Leaves and When

to Stop Splitting - forced

All the data in the node comes from a

single class �We declare the node to be

a leaf and stop splitting. This leaf will

output the class of the data it contains

Several data points have exactly the same

attributes even though they are from

different classes �We cannot split any

further �We still declare the node to be a

leaf, but it will output the class that is the

majority of the classes in the node (in this

example, ‘green crosses’).

Decision Tree Algorithm (Continuous Attributes)
• LearnTree(X,Y)
– Input:

• Set X of R training vectors, each containing the values (x1,..,xM) of
M attributes (X1,..,XM)

• A vector Y of R elements, where yj = class of the j
th datapoint

– If all the datapoints in X have the same class value y

• Return a leaf node that predicts y as output

– If all the datapoints in X have the same attribute value (x1,..,xM)

• Return a leaf node that predicts the majority of the class values in Y
as output

– Try all the possible attributes Xj and threshold t and choose the
one, j*, for which IG(Y|Xj,t) is maximum

– XL, YL= set of datapoints for which xj* < t and corresponding
classes

– XH, YH = set of datapoints for which xj* >= t and corresponding
classes

– Left Child LearnTree(XL,YL)

– Right Child LearnTree(XH,YH)

Decision Trees So Far
• Given R observations from training data, each
with M attributes X and a class attribute Y,
construct a sequence of tests (decision tree) to
predict the class attribute Y from the attributes X

• Basic strategy for defining the tests (“when to
split”) � maximize the information gain on the
training data set at each node of the tree

• Problems (next):
– Computational issues � How expensive is it to
compute the IG

– The tree will end up being much too big � pruning

– Evaluating the tree on training data is dangerous �
overfitting

Side example with

both discrete and

continuous

attributes:

Predicting MPG

(‘GOOD’ or ‘BAD’)

from attributes:

Cylinders

Horsepower

Acceleration

Maker (discrete)

Displacement

The Overfitting Problem: Example

• Suppose that, in an ideal world, class B is
everything such that X2 >= 0.5 and class A is
everything with X2 < 0.5

• Note that attribute X1 is irrelevant

• Seems like generating a decision tree would be
trivial

Class B

Class A

The Overfitting Problem: Example

• However, we collect training examples from the

perfect world through some imperfect observation

device

• As a result, the training data is corrupted by noise.

The Overfitting Problem: Example

• Because of the noise, the resulting decision tree is
far more complicated than it should be

• This is because the learning algorithm tries to
classify all of the training set perfectly � This is a
fundamental problem in learning: overfitting

The Overfitting Problem: Example

• The effect of overfitting is that the tree is
guaranteed to classify the training data perfectly,
but it may do a terrible job at classifying new test
data.

• Example: (0.6,0.9) is classified as ‘A’

A

The Overfitting Problem: Example

• The effect of overfitting is that the tree is
guaranteed to classify the training data perfectly,
but it may do a terrible job at classifying new test
data.

• Example: (0.6,0.9) is classified as ‘A’

A

It would be nice to identify

automatically that splitting

this node is stupid.

Possible criterion: figure

out that splitting this node

will lead to a “complicated”

tree suggesting noisy data

The Overfitting Problem: Example

• The effect of overfitting is that the tree is
guaranteed to classify the training data perfectly,
but it may do a terrible job at classifying new test
data.

• Example: (0.6,0.9) is classified as ‘A’

A

Note that, even though the

attribute X1 is completely

irrelevant in the original

distribution, it is used to

make the decision at that

node

Possible Overfitting Solutions

• Grow tree based on training data

(unpruned tree)

• Prune the tree by removing useless nodes

based on:

– Additional test data (not used for training)

– Statistical significance tests

Training Data

Unpruned decision tree

from training data

Unpruned decision tree

from training data

Training data

with the partitions induced

by the decision tree

(Notice the tiny regions at

the top necessary to

correctly classify the ‘A’

outliers!)

Unpruned decision tree

from training data

Unpruned decision tree

from training data

Performance (%

correctly classified)

Training: 100%

Test: 77.5%

Training data

Test data

Pruned decision tree

from training data

Performance (%

correctly classified)

Training: 95%

Test: 80%

Training data

Test data

Pruned decision tree from

training data

Performance (% correctly

classified)

Training: 80%

Test: 97.5%

Training data

Test data

Size of decision tree%
 o
f
d
a
ta
 c
o
rr
e
c
tl
y
 c
la
s
s
if
ie
d

Performance on

training set

Performance on

test set

T
re
e
 w
it
h
 b
e
s
t

p
e
rf
o
rm
a
n
c
e
 o
n

te
s
t
s
e
t

Using Test Data

Classification rate

on training data

Classification rate

on test data

In this region, the tree overfits the

training data (including the noise!) and

start doing poorly on the test data

%
 C
o
rr
e
c
t
c
la
s
s
if
ic
a
ti
o
n

Size of tree

Using Test Data

• General principle: As the complexity of the
classifier increases (depth of the decision tree),
the performance on the training data increases
and the performance on the test data decreases
when the classifier overfits the training data.

Classification rate

on training data

Classification rate

on test data

In this region, the tree overfits the

training data (including the noise!) and

start doing poorly on the test data

%
 C
o
rr
e
c
t
c
la
s
s
if
ic
a
ti
o
n

Size of tree

Basic Questions

• How to choose the attribute/value to split

on at each level of the tree?

• When to stop splitting? When should a

node be declared a leaf?

• If a leaf node is impure, how should the

class label be assigned?

• If the tree is too large, how can it be

pruned?

Decision Tree Pruning

• Construct the entire tree as before

• Starting at the leaves, recursively
eliminate splits:

– Evaluate performance of the tree on test data
(also called validation data, or hold out data
set)

– Prune the tree if the classification
performance increases by removing the split

Prune node if

classification

performance

on test set is

greater for (2)

than for (1)
(1) (2)

Possible Overfitting Solutions

• Grow tree based on training data

(unpruned tree)

• Prune the tree by removing useless nodes

based on:

– Additional test data (not used for training)

– Statistical significance tests

A Criterion to Detect Useless Splits
• The problem is that we split whenever the
IG increases, but we never check if the
change in entropy is statistically
significant

A Criterion to Detect Useless Splits
• The problem is that we split whenever the
IG increases, but we never check if the
change in entropy is statistically
significant

• Reasoning:

• The proportion of the data going to the left
node is pL = (NAL + NBL)/(NA+NB) = 5/9

• The number of class A in
the root node is NA = 2

• The number of class B in
the root node is NB = 7

• The number of class A in
the left node is NAL = 1

• The number of class B in
the left node is NBL = 4

A Criterion to Detect Useless Splits
• The problem is that we split whenever the
IG increases, but we never check if the
change in entropy is statistically
significant

• Reasoning:

• The proportion of the data going to the left
node is pL = (NAL + NBL)/(NA+NB) = 5/9

• Suppose now that the data is completely
randomly distributed (i.e., it does not
make sense to split):

• The expected number of class A in the
left node would be N’AL = NA x pL = 10/9

• The expected number of class B in the
left node would be N’ BL = NB x pL = 35/9

• The number of class A in
the root node is NA = 2

• The number of class B in
the root node is NB = 7

• The number of class A in
the left node is NAL = 1

• The number of class B in
the left node is NBL = 4

A Criterion to Detect Useless Splits
• The problem is that we split whenever the
IG increases, but we never check if the
change in entropy is statistically
significant

• Reasoning:

• The proportion of the data going to the left
node is pL = (NAL + NBL)/(NA+NB) = 5/9

• Suppose now that the data is completely
randomly distributed (i.e., it does not
make sense to split):

• The expected number of class A in the
left node would be N’AL = NA x pL = 10/9

• The expected number of class B in the
left node would be N’ BL = NB x pL = 35/9

• Question:

• Are NA and NB sufficiently different from
N’A and N’B. If not, it means that the split
is not statistically significant and we
should not split the root � The resulting
children are not significantly different from
what we would get by splitting a random
distribution at the root node.

• The number of class A in
the root node is NA = 2

• The number of class B in
the root node is NB = 7

• The number of class A in
the left node is NAL = 1

• The number of class B in
the left node is NBL = 4

A Criterion to Detect Useless Splits
• Measure of statistically significance:

• K = (N’AL- NAL)
2/N’AL + (N’BL- NBL)

2/N’BL +

(N’AR- NAR)
2/N’AR + (N’BR- NBR)

2/N’BR

K measures how much the split deviates from what we

would get if the data where random

K small � The increase in IG of the split is not

significant

In this example (primes are expected): K =

(10/9 – 1)2/(10/9) +(35/9 – 4)2/(35/9) + …= 0.0321

χ2 Criterion: General Case

• Nij = Number of points from class i in child j

• N’ij = Number of points from class i in child j
assuming a random selection

• N’ij = Ni x Pj

N data points

NL data points NR data points

∑
−

=

j
i ij

ijij

N

NN
K

children
classesall

'

2')(

PL PR

χ2 Criterion: General Case

N data points

NL data points NR data points

PL PR

∑
−

=

j
i ij

ijij

N

NN
K

children
classesall

'

2')(

Difference between the

distribution of class i from the

proposed split and the

distribution from randomly

drawing data points in the same

proportions as the proposed split

Small (Chi-square) values

indicate low statistical

significance � Remove the

splits that are lower than a

threshold Κ < t.
Lower t � bigger trees

(more overfitting).

Larger t � smaller trees

(less overfitting, but worse

classification error).

Decision Tree Pruning

• Construct the entire tree as before

• Starting at the leaves, recursively

eliminate splits:
– At a leaf NNNN:

• Compute the K value for NNNN and its parent PPPP.

• If the K values is lower than the threshold t:
– Eliminate all of the children of PPPP

– PPPP becomes a leaf

– Repeat until no more splits can be eliminated

K = 10.58

K = 0.0321

K = 0.83 The gains

obtained by

these splits are

not significant

• By thresholding K we end up with the decision
tree that we would expect (i.e., one that does not
overfit the data)

• Note: The approach is presented with
continuous attributes in this example but it works
just as well with discrete attributes.

χ2 Pruning

• The test on K is a version of a standard
statistical test, the χ2 (‘chi-square’) test.

• The value of t is retrieved from statistical
tables. For example, K > t means that, with
confidence 95%, the information gain due
to the split is significant.

• If K < t, with high confidence, the
information gain will be 0 over very large
training samples

– Reduces overfitting

– Eliminates irrelevant attributes

Example
Class Sepal

Length

(SL)

Sepal

Width

(SW)

Petal

Length

(PL)

Petal

Width

(PW)

Setosa 5.1 3.5 1.4 0.2

Setosa 4.9 3 1.4 0.2

Setosa 5.4 3.9 1.7 0.4

Versicolor 5.2 2.7 3.9 1.4

Versicolor 5 2 3.5 1

Versicolor 6 2.2 4 1

Virginica 6.4 2.8 5.6 2.1

Virginica 7.2 3 5.8 1.6

50 examples from each class

Full Decision Tree

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal length (PL)

P
et
al
 w

id
th
 (
P
W

)

Pruning One Level

Pruning Two Levels

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal length (PL)

P
et
al
 w

id
th
 (
P
W

)

Unpruned

Unpruned
27% probability

that this is a

“chance” node

according to χ2

test.

Node should be

pruned.

Pruned

Decision Trees

• Information Gain (IG) criterion for choosing
splitting criteria at each level of the tree.

• Versions with continuous attributes and
with discrete (categorical) attributes

• Basic tree learning algorithm leads to
overfitting of the training data

• Pruning with:

– Additional test data (not used for training)

– Statistical significance tests

• Example of inductive learning

But what if…

We don’t have labels / classes ?

But what if…

We don’t have labels / classes ?

Everything so far has been “supervised”

learning. The algorithms get to see class

labels.

But what if…

We don’t have labels / classes ?

Everything so far has been “supervised”

learning. The algorithms get to see class

labels.

We can do unsupervised learning too!

Called clustering.

K-Means

• Pick cluster centers.

• Assign data to clusters.

• Find new cluster centers.

• Repeat.

K-Means

• Problems:

– Number of clusters?

K-Means

• Problems:

– Number of clusters?

K-Means

• Problems:

– Number of clusters?

– Starting positions?

• Remember hill-climbing?

Neat Algorithms / Paradigms

• Spectral Clustering

Neat Algorithms / Paradigms

• Spectral Clustering

Neat Algorithms / Paradigms

• Spectral Clustering

Neat Algorithms / Paradigms

• Spectral Clustering

• k-Nearest Neighbors

Neat Algorithms / Paradigms

• Spectral Clustering

• k-Nearest Neighbors

• Hierarchical Agglomerative Clustering

