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Robot Motion Planning
… or: Movie Days

Movies/demos provided by James Kuffner and Howie Choset + 
Examples from J.C. Latombe’s book (references on the last page)

Example from Howie Choset
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Example from James Kuffner

Example from Howie Choset
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Robot Motion Planning

• Application of earlier search approaches 
(A*, stochastic search, etc.)

• Search in geometric structures
• Spatial reasoning
• Challenges:

– Continuous state space
– Large dimensional space

Biology

Process Engineering/Design

Animation/
Virtual actors

Robotics is only 
(a small) one of 
many 
applications of 
spatial 
reasoning

(Kineo)
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Degrees of Freedom

Examples

Allowed to move only 
in x and y: 2DOF

Allowed to move in x
and y and to rotate: 
3DOF (x,y,θ)
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Control versus Space

How many control DOF’s 
do you need for x,y,θ to all 
be controlled?

- synchro-drive
- diff-drive
- Ackerman

Examples

Fixed (attached at the base)

Free Flying

Fixed (the dashed line is 
constrained to be horizontal)

Fixed
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• Configuration space � = set of values of q
corresponding to legal configurations of the 
robot
• Defines the set of possible parameters (the 
search space) and the set of allowed paths

Configuration Space (C-Space)

Free Space: Point Robot

• �free = {Set of parameters q for which 
A(q) does not intersect obstacles}
• For a point robot in the 2-D plane: R2

minus the obstacle regions
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Free Space: Symmetric Robot

• We still have ��= R2 because 
orientation does not matter
• Reduce the problem to a point 
robot by expanding the obstacles by 
the radius of the robot
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Free Space: Non-Symmetric Robot

• The configuration space is now three-
dimensional (x,y,θ)
• We need to apply a different obstacle 
expansion for each value of θ
• We still reduce the problem to a point 
robot by expanding the obstacles

θ

x

y
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More Complex C-Spaces

Motion Planning Problem
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Any Formal Guarantees? Generic 
Piano Movers Problem

Approaches

• Basic approaches:
– Roadmaps

• Visibility graphs
• Voronoi diagrams

– Cell decomposition
– Potential fields

• Extensions
– Sampling Techniques
– On-line algorithms

In all cases: Reduce the 
intractable problem in 
continuous C-space to a 
tractable problem in a 
discrete space � Use 
all of the techniques we 
know (A*, stochastic 
search, etc.)
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Roadmaps

Visibility Graphs
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Visibility Graphs

In the absence of obstacles, the best path 
is the straight line between qstart and qgoal

Visibility Graphs
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Visibility Graphs

• Assuming polygonal obstacles: It looks like 
the shortest path is a sequence of straight lines 
joining the vertices of the obstacles.
• Is this always true?

Visibility Graphs
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Visibility Graphs

• Visibility graph G = set of unblocked lines between 
vertices of the obstacles + qstart and qgoal
• A node P is linked to a node P’ if P’ is visible from P
• Solution = Shortest path in the visibility graph
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Construction: Sweep Algorithm

• Sweep a line originating at each vertex
• Record those lines that end at visible vertices

Complexity

• N = total number of vertices of the 
obstacle polygons
• Naïve: O(N3)
• Sweep: O(N2 log N)
• Optimal: O(N2)
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Visibility Graphs: Weaknesses
• Shortest path but:

– Tries to stay as close as possible to obstacles
– Any execution error will lead to a collision
– Complicated in >> 2 dimensions

• We may not care about strict optimality so 
long as we find a safe path. Staying away 
from obstacles is more important than 
finding the shortest path

• Need to define other types of “roadmaps”

Voronoi Diagrams

• Given a set of data points in the plane:
– Color the entire plane such that the color of any point 

in the plane is the same as the color of its nearest 
neighbor
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Voronoi Diagrams

• Voronoi diagram = The set of line segments 
separating the regions corresponding to different 
colors

• Line segment = points equidistant from 2 data points
• Vertices = points equidistant from > 2 data points
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Voronoi Diagrams

• Voronoi diagram = The set of line segments 
separating the regions corresponding to different 
colors

• Line segment = points equidistant from 2 data points
• Vertices = points equidistant from > 2 data points

Voronoi Diagrams

• Complexity (in the plane):
• O(N log N) time
• O(N) space
(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for 
an interactive demo)
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Voronoi Diagrams: Beyond Points

• Edges are combinations of straight line 
segments and segments of quadratic curves

• Straight edges: Points equidistant from 2 lines
• Curved edges: Points equidistant from one 

corner and one line



20



21

Voronoi Diagrams (Polygons)

• Key property: The points on the edges of the Voronoi 
diagram are the furthest from the obstacles
• Idea: Construct a path between qstart and qgoal by 
following edges on the Voronoi diagram
• (Use the Voronoi diagram as a roadmap graph instead 
of the visibility graph)

Voronoi Diagrams: Planning

• Find the point q*start of the Voronoi 
diagram closest to qstart

• Find the point q*goal of the Voronoi 
diagram closest to qgoal

• Compute shortest path from q*start to 
q*goal on the Voronoi diagram
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Example
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Voronoi: Weaknesses

• Difficult to compute in higher dimensions or 
nonpolygonal worlds

• Approximate algorithms exist
• Use of Voronoi is not necessarily the best heuristic (“stay 

away from obstacles”)  Can lead to paths that are much 
too conservative, or lead to “ranging sensor deprivation”

• Can be unstable � Small changes in obstacle 
configuration can lead to large changes in the diagram

• Localization is hard (e.g. museums) if you stay away 
from known surfaces

Approaches

• Basic approaches:
– Roadmaps

• Visibility graphs
• Voronoi diagrams

– Cell decomposition
– Potential fields

• Extensions
– Sampling Techniques
– On-line algorithms

Decompose the 
space into cells so 
that any path inside a 
cell is obstacle free



24

Approximate Cell Decomposition

• Define a discrete grid in C-Space
• Mark any cell of the grid that intersects �obs as 

blocked
• Find path through remaining cells by using (for 

example) A* (e.g., use Euclidean distance as 
heuristic)

• Cannot be complete as described so far. Why?
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Approximate Cell Decomposition

• Cannot find a path in this case even though one exists
• Solution:
• Distinguish between 

– Cells that are entirely contained in �obs (FULL) and
– Cells that partially intersect �obs (MIXED)

• Try to find a path using the current set of cells
• If no path found:

– Subdivide the MIXED cells and try again with the new set of 
cells

Start Goal

Start Goal
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Approximate Cell Decomposition: 
Limitations

• Good:
– Limited assumptions on obstacle 

configuration
– Approach used in practice
– Find obvious solutions quickly

• Bad:
– No clear notion of optimality (“best” path)
– Trade-off completeness/computation
– Still difficult to use in high dimensions
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Exact Cell Decomposition

Exact Cell Decomposition

• The graph of cells defines a roadmap



28

Exact Cell Decomposition

• The graph can be used to find a path 
between any two configurations

1

2
3

4 5

Critical event:
Create new cell

Critical event:
Split cell
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Plane Sweep algorithm
• Initialize current list of cells to empty
• Order the vertices of �obs along the x direction
• For every vertex:

– Construct the plane at the corresponding x location
– Depending on the type of event:

• Split a current cell into 2 new cells OR
• Merge two of the current cells

– Create a new cell

• Complexity (in 2-D):
– Time: O(N log N)
– Space: O(N)

Exact Cell Decomposition

• A version of exact cell decomposition can be extended 
to higher dimensions and non-polygonal boundaries 
(“cylindrical cell decomposition”)

• Provides exact solution � completeness
• Expensive and difficult to implement in higher 

dimensions
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Humans?

What do you think humans do?

Humans?

What do you think humans do?

“Volume-based reasoning”
“Boundary detection”
“Relevance reasoning”
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Approaches

• Basic approaches:
– Roadmaps

• Visibility graphs
• Voronoi diagrams

– Cell decomposition
– Potential fields

• Extensions
– Sampling Techniques
– On-line algorithms

Potential Fields

• Stay away from obstacles: Imagine that the 
obstacles are made of a material that generate a 
repulsive field

• Move closer to the goal: Imagine that the goal 
location is a particle that generates an attractive
field
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Move toward
lowest potential
Steepest descent
(Best first search)
on potential field
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Potential Fields: Limitations

• Completeness?
• Problems in higher dimensions

Can you spot 
the problem?

Local Minimum Problem

• Potential fields in general exhibit local minima
• Special case: Navigation function

– U(qgoal) = 0
– For any q different from qgoal, there exists a 

neighbor q’ such that U(q’) < U(q)
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Getting out of Local Minima I
• Repeat

– If U(q) = 0 return Success
– If too many iterations return Failure
– Else:

• Find neighbor qn of q with smallest U(qn)
• If U(qn) < U(q) OR qn has not yet been 

visited
–Move to qn (q ���� qn)
–Remember qn

May take a long 
time to explore 
region “around”
local minima

Getting out of Local Minima II
• Repeat

– If U(q) = 0 return Success
– If too many iterations return Failure
– Else:

• Find neighbor qn of q with smallest U(qn)
• If U(qn) < U(q)

– Move to qn (q ���� qn)

• Else
– Take a random walk for T steps starting at qn

– Set q to the configuration reached at the end of 
the random walk

Similar to stochastic search 
and simulated annealing: 
We escape local minima 
faster
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Putting it all together: 
Vagabond…

Putting it all together: 
Personal Rover I…
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Large C-Space Dimension

~13,000 DOFs !!!

Millipede-
like robot 
(S. Redon)

Dealing with C-Space Dimension

• We should evaluate all the neighbors of the current 
state, but:

• Size of neighborhood grows exponentially with 
dimension

• Very expensive in high dimension
Solution:
• Evaluate only a random subset of K of the neighbors
• Move to the lowest potential neighbor

Full set of neighbors Random subset of neighbors
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1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9



38



39

• (Limited) background in Russell&Norvig 
Chapter 25

• Two main books:
– J-C. Latombe. Robot Motion Planning. Kluwer. 

1991.
– S. Lavalle. Planning Algorithms. 2006. 

http://msl.cs.uiuc.edu/planning/
– H. Choset et al., Principles of Robot Motion: 

Theory, Algorithms, and Implementations. 2006.

• Other demos/examples:
– http://voronoi.sbp.ri.cmu.edu/~choset/
– http://www.kuffner.org/james/research.html
– http://msl.cs.uiuc.edu/rrt/


