
Artificial Intelligence

Markov decision processes (MDPs)

Example: HMM with no actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

0.2

0.7 0.9

0.1
1

0.6

0.1

Google

200

On the
street

0

Dead

0

0.6

0.2 0.1 0.1
1

0.1

0.3
0.3

0.1

0.6

What’s missing in HMMs
• HMMs cannot model important aspects of agent interactions:

- No model for rewards
- No model for actions which can affect these rewards

• These are actually issues that are faced by many applications:
- Agents negotiating deals on the web
- A robot which interacts with its environment- A robot which interacts with its environment

Example: No actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

0.2

0.7 0.9

0.1
1

0.6

0.1

Google

200

On the
street

0

Dead

0

0.6

0.2 0.1 0.1
1

0.1

0.3
0.3

0.1

0.6

Formal definition of MDPs

• A set of states {s1 … sn}
• A set of rewards {r1 … rn}
• A set of action {a1 .. am}
• Transition probability

One reward for each state

Number of actions could be
larger than number of states

)&|(1, ktitjt
k
ji ahsqsqPP ==== +

Questions

• What is my expected payoff if I am in state i
• What is my expected payoff if I am in state i and perform

action a?

Solving MDPs

• No actions: Value iterations

• With actions: Value iteration, Policy iteration

Value computation
• An obvious question for such models is what is

combined expected value for each state
• What can we expect to earn over our life time if we

become Asst. prof.?
• What if we go to industry?

Before we answer this question, we need to define a
model for future rewards:

• The value of a current award is higher than the value
of future awards

- Inflation, confidence

- Example: Lottery

Discounted rewards

• The discounted rewards model is specified using a
parameter γ

• Total rewards = current reward +
γ (reward at time t+1) +
γ2 (reward at time t+2) +γ2 (reward at time t+2) +
………….
γk (reward at time t+k) +

infinite sum

Discounted awards

• The discounted award model is specified using a
parameter γ

• Total awards = current award +
γ (award at time t+1) +
γ2 (award at time t+2) +γ2 (award at time t+2) +
………….
γk (award at time t+k) +

infinite sum

Converges if 0<γ<1

Determining the total rewards in a
state

• Define J*(si) = expected discounted sum of rewards when
starting at state si

• How do we compute J*(si)?

)(* ii XrsJ += γ
))(*)(*)(*(

)(*

2211 niniii

ii

sJpsJpsJpr

XrsJ

�+++=
+=

γ
γ

How can we solve this?

Computing j*(si)

))(*)(*)(*()(* 222212122 nn sJpsJpsJprsJ �+++= γ

))(*)(*)(*()(* 121211111 nn sJpsJpsJprsJ �+++= γ

))(*)(*)(*()(* 2211 nnnnnnn sJpsJpsJprsJ �+++= γ

• We have n equations with n unknowns

• Can be solved in closed form

))(*)(*)(*()(* 2211 nnnnnnn sJpsJpsJprsJ �+++= γ

Iterative approaches
• Solving in closed form is possible, but may be time consuming.
• Alternatively, this problem can be solved in an iterative manner
• Let’s define Jt(si) as the expected total discounted rewards after t

steps
• How can we compute Jt(si)?

ii rSJ =)(1

�
�

�
�
�

�+= �
k

kkiii sJprSJ)()(1
,

2 γ

�
�

�
�
�

�+= �+

k
k

t
kiii

t sJprSJ)()(,
1 γ

Iterative approaches
• Solving in closed form is possible, but may be time

consuming.
• Alternatively, this problem can be solved in an iterative

manner
• Lets define Jk(si) as the expected discounted awards after k

steps

We know how to solve this!

Lets fill the dynamic programming table

steps
• How can we compute Jk(si)?

ii rSJ =)(1

�
�

�
�
�

�+= �
k

kkiii sJprSJ)()(1
,

2 γ

�
�

�
�
�

�+= �+

k
k

t
kiii

t sJprSJ)()(,
1 γ

But wait …

This is a never ending task!

When do we stop?
ii rSJ =)(1

�
�

�
�
�

�+= �
k

kkiii sJprSJ)()(1
,

2 γ

�
�

�
�+= �+

k
t

kiii
t sJprSJ)()(,

1 γ �
�

�
�

+= �
k

kkiii sJprSJ)()(,γ

Remember, we have a converging function

We can stop when |Jt-1(si)- Jt(si)|∞∞∞∞ < ε

Infinity norm selects maximal element

Example for γ=0.9

Graduate
student

20

Asst. prof

40

0.2

0.8

0.1 1

0.6

t Jt(Gr) Jt(P) Jt(Goo) Jt(D)

Google

200

Dead

0

0.9

0.2

0.1

0.1

1

0.1

1 20 40 200 0

2 74 87 362 0

3 141 135 493 0

4 209 182 600 0

Solving MDPs

• No actions: Value iterations

• With actions: Value iteration, Policy iteration

√√√√

Adding actions

A Markov Decision Process:
• A set of states {s1 … sn}
• A set of rewards {r1 … rn}
• A set of action {a1 .. am}
• Transition probability• Transition probability

)&|(1, kttjt
k
ji ahiqsqPP ==== +

Example: Actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

Action A

0.7 0.7 0.9

0.3

0.2

1

0.1
Action
B

0.1

Google

200

On the
street

0

Dead

0

0.1
1

0.1

0.3
0.3

0.1

0.60.6

0.1
0.1

Action A: Leave to
Google

Action B: Stay in
academia

0.8

Questions for MDPs

• Now we have actions
• The question changes to the following:

Given our current state and the possible actions, what is
the best action for us in terms of long term payment?the best action for us in terms of long term payment?

Example: Actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

Action A

0.7 0.7 0.9

0.3

0.2

1

0.1
Action
B

0.1

Google

200

On the
street

0

Dead

0

0.1
1

0.1

0.3
0.3

0.1

0.60.6

0.1
0.1

Action A: Leave to
Google

Action B: Stay in
academia

So should you leave now (right
after class) or should you stay in
school?

0.8

Policy

• A policy maps states to
actions

• An optimal policy leads to
the highest expected
returns

Gr B

Go A

returns
• Note that this does not

depend on the start state
• How is this different from

the Planning solutions we
studies 2 weeks ago?

Asst. Pr. A

Ten. Pr. B

Solving MDPs with actions

• It could be shown that for every MDP there exists an
optimal policy (we won’t discuss the proof).

• Such policy guarantees that there is no other action that
is expected to yield a higher payoff

Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:• Then we compute:

�
�
�

�
�
�
�

�
+= �+

j
j

tk
i

k
i

t sJprSJ ji)()(,max1 γ

Also known as Bellman’s
equation

Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:• Then we compute:

�
�
�

�
�
�
�

�
+= �+

j
j

tk
i

k
i

t sJprSJ ji)()(,max1 γ

Run until convergences

Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:• Then we compute:

�
�
�

�
�
�
�

�
+= �+

j
j

tk
i

k
i

t sJprSJ ji)()(,max1 γ

• When the algorithm converges, we have
computed the best outcome for each state

• We associate states with the actions that
maximize their return

Value iteration for γ=0.9

Graduate
student

20

Asst. prof

40

0.8

0.1 1
t Jt(Gr) Jt(P) Jt(Goo) Jt(D)

0.7

0.3
Action
B

Action A

0.2

Google

200

Dead

0

0.9

0.1

0.1

1

0.1

t Jt(Gr) Jt(P) Jt(Goo) Jt(D)

1 20 40 200 0

2 168(A)
51(B)

87 362 0

3 311(A)
120(B)

135 493 0

4 431(A)
189(B)

182 600 0

Action A

0.8

Computing the optimal policy:
2. Policy iteration

• We can also compute optimal policies by revising an
existing policy.

• We initially select a policy at random (mapping from
states to actions).

• We re-compute the expected long term reward at each • We re-compute the expected long term reward at each
state using the selected policy

• We select a new policy using the expected rewards and
iterate until convergences

Policy iteration: algorithm

• Let �t(si) be the selected policy at time t
1. Randomly choose �0 ; set t = 0
2. For each state si compute J*(si), the long term

expected reward using policy �t .
3. Set � (s) = �

�
�
�

+ � k sJpr)(*max γ3. Set �t(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.

�
�
�

�
�
�
�

�
+ �

j
j

k
i

k

sJpr ji)(*
,max γ

Policy iteration: algorithm

• Let �t(si) be the selected policy at time t for state i
1. Randomly choose �0 ; set t = 0
2. For each state si compute J*(si), the long term

expected reward using policy �t .
3. set � (s) = �

�
�
�

+ � k sJpr)(*max γ3. set �t+1(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.

�
�
�

�
�
�
�

�
+ �

j
j

k
i

k

sJpr ji)(*
,max γ

Can be computed
using value iteration

Can be computed
using J*(si) for all
states

Value iteration vs. policy iteration

• Depending on the model and the information at hand:
- If you have a good guess regarding the optimal policy
then policy iteration would converge much faster
- similarly, if there are many possible actions, policy
iteration might be fasteriteration might be faster
- otherwise value iteration is a safer way

What you should know

• Models that include rewards and actions
• Value iteration for solving MDPs
• Policy iteration

Partially Observed Markov
Decision Processes (POMDPs)

• Same model as MDP except: We do not observe the
states we are in.

• Thus, we have a distribution over states
• There is an initial distribution for states (initial belief)
• Once we reach a new state and receive a reward we can • Once we reach a new state and receive a reward we can

re-compute a new belief regrading the possible set of
states

Example

1 1 1

3 1

1 2 1

2

• If we see 1, we can be in any of several
locations.

• However, based on past and future
observations we can increase a decrease
our belief at a given state 1 2 1

POMDPs can be solved by extending the MDP
methods to solve for a belief state vector rather than
for the original single state MDP

