I 5-381 ARTIFICIAL INTELLIGENCE LECTURE 8: BAYESIAN NETWORKS

Fall 2010

 $\begin{array}{ll} \mbox{Marginal Probability} & \mbox{Joint Probability} \\ \mbox{SUM RULE} & p(X) = \sum_{Y} p(X,Y) \end{array}$

PRODUCT RULE

EARTHQUAKE

B=TRUE if house is burgled E=TRUE is there is an earthquake A=TRUE if the alarm rings J=TRUE if John Calls M=TRUE if Mary Calls

A

B

EARTHQUAKE

MARY

WILL I GET A CALL IF THERE IS AN EARTHQUAKE AND NO BURGLARY? WILL I GET A CALL IF THERE IS NO EARTHQUAKE AND NO BURGLARY? WILL I GET A CALL IF THERE IS NO EARTHQUAKE AND NO BURGLARY? WILL I GET A CALL FROM MARY IF THERE IS A BURGLARY? WILL THE ALARM GO OFF IF THERE IS AN EARTHQUAKE AND NO ALARM? WILL I GET A CALL IF THERE IS AN EARTHQUAKE AND NO BURGLARY? WILL I GET A CALL IF THERE IS NO EARTHQUAKE AND NO BURGLARY? WILL I GET A CALL IF THERE IS NO EARTHQUAKE AND NO BURGLARY? WILL I GET A CALL FROM MARY IF THERE IS A BURGLARY? WILL THE ALARM GO OFF IF THERE IS AN EARTHQUAKE AND NO ALARM?

p(B, E, A, J, M)Joint Probability

PARAMETERS

PRODUCT RULE

p(B, E, A, J, M) = p(B|E, A, J, M)p(E, A, J, M)

= p(B|E, A, J, M)p(E|A, J, M)p(A, J, M)

$$p(B, E, A, J, M) = \frac{p(B|E, A, J, M)p(E|A, J, M)p(A|J, M)p(J|M)p(M)}{2^{4}=16} \frac{8}{8} \frac{1}{4} \frac{1}{2} \frac{1}{1}$$

TOTAL # OF PARAMETERS: 31

OBSERVABLE AND LATENT VARIABLES

OBSERVABLE AND LATENT VARIABLES

OBSERVABLE AND LATENT VARIABLES

PROBABILITIES

PROBABILITIES

p(B = TRUE) = 0.001 p(B = FALSE) = 0.999

PROBABILITIES

EARTHQUAKE E

p(B = TRUE) = 0.001 p(B = FALSE) = 0.999

p(E = TRUE) = 0.002p(E = FALSE) = 0.998

CONDITIONAL PROBABILITY TABLE p(A|B, E)

B	E	TRUE	FALSE
TRUE	TRUE	0.95	0.05
TRUE	FALSE	0.95	0.05
FALSE	TRUE	0.29	0.71
FALSE FALSE		0.001	0.999

CONDITIONAL PROBABILITY TABLE

		p(A B,E)	
B	E	TRUE	FALSE
TRUE	TRUE	0.95	0.05
TRUE	FALSE	0.95	0.05
FALSE	TRUE	0.29	0.71
FALSE	FALSE	0.001	0.999

CONDITIONAL PROBABILITY TABLE

B	E	p(A B, E)
TRUE	TRUE	0.95
TRUE	FALSE	0.95
FALSE	TRUE	0.29
FALSE	FALSE	0.001

PROBABILITIES

JOHN

PROBABILITIES

JOHN

A	p(J A)
TRUE	0.90
FALSE	0.05

PROBABILITIES

JOHN

 A
 p(J|A) A
 p(M|A)

 TRUE
 0.90
 TRUE
 0.70

 FALSE
 0.05
 FALSE
 0.01

GRAPHS

GRAPHS

GRAPHS

DIRECTED GRAPHS

DIRECTED ACYCLIC GRAPHS (DAG)

PATH

PROBABILISTIC GRAPHICAL MODELS

PROBABILISTIC GRAPHICAL MODELS

a is the **parent** of *b c* is the **child** of *a* and *b*

PROBABILISTIC GRAPHICAL MODELS

UNDIRECTED EDGE

MARKOV RANDOM FIELDS

UNDIRECTED GRAPHICAL MODELS

BAYESIAN NETWORKS

BELIEF NETWORKS DIRECTED ACYCLIC GRAPHICAL MODELS

p(a, b, c)

 $p(a,b,c) = p(c|a,b)p(a,b) \quad \text{product rule}$

p(a,b,c) = p(c|a,b)p(a,b) product rule = p(c|a,b)p(b|a)p(a)

p(a, b, c) = p(c|a, b)p(a, b) product rule $= \underbrace{p(c|a, b)p(b|a)p(a)}_{\text{Factors}} \text{ Factors}$

p(a,b,c) = p(c|a,b)p(a,b) product rule $= \underbrace{p(c|a,b)p(b|a)p(a)}_{\text{Factors}} - \underbrace{Factors}_{\text{Factors}}$ \mathcal{C} h

p(a,b,c) = p(c|a,b)p(a,b) product rule = p(c|a, b)p(b|a)p(a)Factors С ah

p(a, b, c) = p(c|a, b)p(b|a)p(a)

BAYESIAN NETWORKS ORDERING

p(a, b, c) = p(c|a, b)p(b|a)p(a) p(a, b, c) = p(b|c, a)p(a|c)p(c)

p(a, b, c) = p(c|a, b)p(b|a)p(a)

p(a, b, c) = p(b|c, a)p(a|c)p(c)

p(a, b, c) = p(c|a, b)p(b|a)p(a)

p(a, b, c) = p(b|c, a)p(a|c)p(c)

p(a, b, c) = p(c|a, b)p(b|a)p(a)

p(a, b, c) = p(b|c, a)p(a|c)p(c)

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ = $p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ = $p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ = $p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$ = $p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $p(x_2|x_3, x_4, x_5, x_6, x_7)$

 $p(x_3|x_4, x_5, x_6, x_7)$

 $p(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}) = p(x_{1}|x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7})p(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7})$ $= p(x_{1}|x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7})p(x_{2}|x_{3}, x_{4}, x_{5}, x_{6}, x_{7})p(x_{3}, x_{4}, x_{5}, x_{6}, x_{7})$ $= p(x_{1}|x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7})$ $x_{5} \qquad x_{4} \qquad p(x_{2}|x_{3}, x_{4}, x_{5}, x_{6}, x_{7})$ $p(x_{3}|x_{4}, x_{5}, x_{6}, x_{7})$ $p(x_{4}|x_{5}, x_{6}, x_{7})$

 x_2

 x_1

 x_7

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)p(x_2|x_3, x_4, x_5, x_6, x_7)p(x_3, x_4, x_5, x_6, x_7)$ $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ x_4 x_5 $p(x_3|x_4, x_5, x_6, x_7)$ x_6 x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ x_7 x_2

 x_1

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)p(x_2|x_3, x_4, x_5, x_6, x_7)p(x_3, x_4, x_5, x_6, x_7)$ $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ x_4 x_5 $p(x_3|x_4, x_5, x_6, x_7)$ x_6 x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ x_7 x_2 $p(x_6|x_7)$ x_1

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)p(x_2|x_3, x_4, x_5, x_6, x_7)p(x_3, x_4, x_5, x_6, x_7)$ $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ x_4 x_5 $p(x_3|x_4, x_5, x_6, x_7)$ x_6 x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ x_7 x_2 $p(x_6|x_7)$ x_1 $p(x_{7})$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ = $p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $= p(x_1)x$ $x_5 \qquad x_4 \qquad p(x_1)$ $x_6 \qquad x_3 \qquad x_3$ $x_7 \qquad x_1 \qquad x_2$

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ $p(x_3|x_4, x_5, x_6, x_7)$ $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ $p(x_6|x_7)$ $p(x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ = $p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 x_4

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ $p(x_3|x_4, x_5, x_6, x_7)$ x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ x_2 $p(x_6|x_7)$ $p(x_7)$

 x_6

 x_5
$p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ $p(x_3|x_4, x_5, x_6, x_7)$ x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ x_2 $p(x_6|x_7)$ $p(x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 x_4

 x_1

 x_5

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ $p(x_3|x_4, x_5, x_6, x_7)$ x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ x_2 $p(x_6|x_7)$ $p(x_7)$

 x_6

 \mathcal{X}_{7}

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ $p(x_3|x_4, x_5, x_6, x_7)$ x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ $p(x_6|x_7)$ $p(x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2, x_3, x_4, x_5, x_6, x_7)$ $= p(x_1 | x_2, x_3, x_4, x_5, x_6, x_7) p(x_2 | x_3, x_4, x_5, x_6, x_7) p(x_3, x_4, x_5, x_6, x_7)$

 $= p(x_1|x_2, x_3, x_4, x_5, x_6, x_7)$ $p(x_2|x_3, x_4, x_5, x_6, x_7)$ $p(x_3|x_4, x_5, x_6, x_7)$ x_3 $p(x_4|x_5, x_6, x_7)$ $p(x_5|x_6, x_7)$ $p(x_6|x_7)$ $p(x_7)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) =$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$ $p(x_2)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$ $p(x_2)$ $p(x_3)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$ $p(x_2)$ $p(x_3)$ $p(x_4|x_1, x_2, x_3)$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$ $p(x_2)$ $p(x_3)$ $p(x_4 | x_1, x_2, x_3)$ x_4 $p(x_5 | x_1, x_3)$

 $p(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}) = p(x_{1})$ $p(x_{2})$ $p(x_{3})$ $p(x_{4}|x_{1}, x_{2}, x_{3})$ $p(x_{5}|x_{1}, x_{3})$ $p(x_{6}|x_{4})$

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$ $p(x_2)$ $p(x_3)$ $p(x_4|x_1, x_2, x_3)$ x_4 x_5 $p(x_5|x_1, x_3)$ $p(x_6|x_4)$ x_3 $p(x_7|x_4, x_5)$ x_2

 x_6

 x_7

 x_1

 $p(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = p(x_1)$ $p(x_2)$ $p(x_3)$ $p(x_4|x_1, x_2, x_3)$ x_4 x_5 $p(x_5|x_1, x_3)$ $p(x_6|x_4)$ x_6 x_3 $p(x_7|x_4, x_5)$ parents of x x_2 K $p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathrm{pa}_k)$ x_1 k=1

• BAYESIAN NETWORKS ARE ...

- A REPRESENTATION OF JOINT PROBABILITY
- A COLLECTION OF CONDITIONAL
 INDEPENDENCE STATEMENTS
- EXAMPLES?

Diagnosis of Liver Disorders

Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. <u>A Bayesian network model for diagnosis of liver disorders</u>. In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999.

p(B, E, A, J, M) = p(J|A)

p(B, E, A, J, M) = p(J|A)p(M|A)

$$p(B, E, A, J, M) = p(J|A)p(M|A)p(A|B, E)p(B)p(E)$$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

p(B = FALSE, E = FALSE, A = TRUE, J = TRUE, M = TRUE)

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

 $p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) \\ = p(J = \texttt{TRUE}|A = \texttt{TRUE})$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

$$\begin{split} p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) \\ &= p(J = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(M = \texttt{TRUE} | A = \texttt{TRUE}) \end{split}$$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

$$\begin{split} p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) \\ &= p(J = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(M = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(A = \texttt{TRUE} | B = \texttt{FALSE}, E = \texttt{FALSE}) \end{split}$$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

$$\begin{split} p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) \\ &= p(J = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(M = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(A = \texttt{TRUE} | B = \texttt{FALSE}, E = \texttt{FALSE}) \\ p(B = \texttt{FALSE}) \end{split}$$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

$$\begin{split} p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) \\ &= p(J = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(M = \texttt{TRUE} | A = \texttt{TRUE}) \\ p(A = \texttt{TRUE} | B = \texttt{FALSE}, E = \texttt{FALSE}) \\ p(B = \texttt{FALSE}) \\ p(E = \texttt{FALSE}) \end{split}$$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

$$\begin{split} p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) & \\ = p(J = \texttt{TRUE} | A = \texttt{TRUE}) & 0.90 \\ p(M = \texttt{TRUE} | A = \texttt{TRUE}) & 0.70 \\ p(A = \texttt{TRUE} | B = \texttt{FALSE}, E = \texttt{FALSE}) & 0.001 \\ p(B = \texttt{FALSE}) & 0.999 \\ p(E = \texttt{FALSE}) & 0.998 \end{split}$$

- WHAT IS THE PROBABILITY THAT:
 - ALARM SOUNDED AND
 - NO BURGLARY AND
 - NO EARTHQUAKE AND
 - MARY CALLS AND
 - JOHN CALLS?

$$\begin{split} p(B = \texttt{FALSE}, E = \texttt{FALSE}, A = \texttt{TRUE}, J = \texttt{TRUE}, M = \texttt{TRUE}) & \\ &= p(J = \texttt{TRUE} | A = \texttt{TRUE}) & 0.90 \\ p(M = \texttt{TRUE} | A = \texttt{TRUE}) & 0.70 \\ p(A = \texttt{TRUE} | B = \texttt{FALSE}, E = \texttt{FALSE}) & 0.001 \\ p(B = \texttt{FALSE}) & 0.999 \\ p(E = \texttt{FALSE}) & \underbrace{0.999}_{0.00062} \\ \end{split}$$

WILL I GET A CALL IF THERE IS A BURGLARY?

NETWORK CONSTRUCTION

• CHOOSE RANDOM VARIABLES X_i THAT DESCRIBE THE DOMAIN

NETWORK CONSTRUCTION

- CHOOSE RANDOM VARIABLES X_i THAT DESCRIBE THE DOMAIN
- CHOOSE AN ORDERING FOR THE VARIABLES

NETWORK CONSTRUCTION

- CHOOSE RANDOM VARIABLES X_i THAT DESCRIBE THE DOMAIN
- CHOOSE AN ORDERING FOR THE VARIABLES
- WHILE THERE ARE VARIABLES:
NETWORK CONSTRUCTION

- CHOOSE RANDOM VARIABLES X_i THAT DESCRIBE THE DOMAIN
- CHOOSE AN ORDERING FOR THE VARIABLES
- WHILE THERE ARE VARIABLES:
 - PICK A VARIABLE X_i AND ADD A NODE TO THE NETWORK

NETWORK CONSTRUCTION

- CHOOSE RANDOM VARIABLES X_i THAT DESCRIBE THE DOMAIN
- CHOOSE AN ORDERING FOR THE VARIABLES
- WHILE THERE ARE VARIABLES:
 - PICK A VARIABLE X_i AND ADD A NODE TO THE NETWORK
 - SET PARENTS (X_i) TO SOME SET OF EXISTING NODES

NETWORK CONSTRUCTION

- CHOOSE RANDOM VARIABLES X_i THAT DESCRIBE THE DOMAIN
- CHOOSE AN ORDERING FOR THE VARIABLES
- WHILE THERE ARE VARIABLES:
 - PICK A VARIABLE X_i AND ADD A NODE TO THE NETWORK
 - SET PARENTS (X_i) TO SOME SET OF EXISTING NODES
 - DEFINE A CONDITIONAL PROBABILITY TABLE FOR X_i

$\{B, E, A, J, M\}$

$\{B, E, A, J, M\}$

RULE OF THUMB: RESPECT CAUSALITY GOOD ORDERING BECAUSE "ROOT CAUSES" ADDED FIRST

DIAGNOSTIC vs CAUSAL

• EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS

- EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS
- CONDITIONAL PROBABILITIES FOR EACH BOOLEAN RV: 2^K

- EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS
- CONDITIONAL PROBABILITIES FOR EACH BOOLEAN RV: 2^K
- CONDITIONAL PROBABILITIES FOR ALL BOOLEAN RV: N2^K

- EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS
- CONDITIONAL PROBABILITIES FOR EACH BOOLEAN RV: 2^K
- CONDITIONAL PROBABILITIES FOR ALL BOOLEAN RV: N2^K
- JOINT PROBABILITY FOR ALL BOOLEAN RV: 2^N

- EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS
- CONDITIONAL PROBABILITIES FOR EACH BOOLEAN RV: 2^K
- CONDITIONAL PROBABILITIES FOR ALL BOOLEAN RV: N2^K
- JOINT PROBABILITY FOR ALL BOOLEAN RV: 2^N

N=20BELIEF NETWORK= 640K=5JOINT PROBABILITY= 1,048,576

- EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS
- CONDITIONAL PROBABILITIES FOR EACH BOOLEAN RV: 2^K
- CONDITIONAL PROBABILITIES FOR ALL BOOLEAN RV: N2^K
- JOINT PROBABILITY FOR ALL BOOLEAN RV: 2^N
- N=20
K=5BELIEF NETWORK= 640
JOINT PROBABILITY= 1,048,576 $\mathbb{X}=5$ $N=10^{11}$
K=7000BELIEF NETWORK= 2^{7036}
JOINT PROBABILITY= $2^{10^{11}}$

- EACH RANDOM VARIABLE IS INFLUENCE BY K PARENTS
- CONDITIONAL PROBABILITIES FOR EACH BOOLEAN RV: 2^K
- CONDITIONAL PROBABILITIES FOR ALL BOOLEAN RV: N2^K
- JOINT PROBABILITY FOR ALL BOOLEAN RV: 2^N
- N=20
K=5BELIEF NETWORK= 640
JOINT PROBABILITY= 1,048,576 $\mathbb{X} = 5$ JOINT PROBABILITY= 1,048,576 $\mathbb{X} = 7000$ BELIEF NETWORK= 2^{7036}
JOINT PROBABILITY= $2^{10^{11}}$

ESTIMATED NUMBER OF ATOMS IN THE UNIVERSE < 2^{266}

IS THE BRAIN A BELIEF NETWORK?

p(a|b,c) = p(a|c)

p(a|b,c) = p(a|c)

$$p(a, b|c) = p(a|b, c)p(b|c)$$
$$= p(a|c)p(b|c)$$

p(a|b,c) = p(a|c)

$$p(a, b|c) = p(a|b, c)p(b|c)$$
$$= p(a|c)p(b|c)$$

 $a \perp b | c$

p(a|b,c) = p(a|c)

$$p(a, b|c) = p(a|b, c)p(b|c)$$
$$= p(a|c)p(b|c)$$

$a\perp b|c$ "a and b are independent given c"