
Informed Search

Day 3 of Search

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Chap. 4, Russel & Norvig

Uninformed Search Complexity
• N = Total number of states
• B = Average number of successors (branching factor)
• L = Length for start to goal with smallest number of steps
• Q = Average size of the priority queue
• Lmax = Length of longest path from START to any state

Algorithm Complete Optimal Time Space

BFS Breadth First
Search

Y Y, If all trans.
have same cost

O(Min(N,BL)) O(Min(N,BL))

BIBFS Bi- Direction.
BFS

Y Y, If all trans.
have same cost

O(Min(N,2BL/2)) O(Min(N,2BL/2))

UCS Uniform Cost
Search

Y, If cost >
0

Y, If cost > 0 O(log(Q)*BC/ε)) O(Min(N,BC/ε))

PCDFS Path Check
DFS

Y N O(BLmax) O(BLmax)

MEMD
FS

Memorizing
DFS

Y N O(Min(N,BLmax)) O(Min(N,BLmax))

DFID Iterative
Deepening

Y Y, If all trans.
have same cost

O(BL) O(BL)

states expanded
so far

D

E

F

Search Revisited

START

f(A)

f(B)

f(C)

A

B

States ready to
be expanded
(the “fringe”)

F

1. Store a value f(s) at each state s
Low f() means this state may lie on the solution path

2. Choose the state with lowest f to expand next
3. Insert its successors

If f() is chosen carefully, we will eventually find the lowest-
cost sequence

f(C)
C

START

A

B

C

f(A)

f(B)

f(C)

D

E

F

g(A) =10

g(A) =5

Example:

• For UCS (Uniform Cost Search): f(A) = g(A) = total cost of
current shortest path from START to A
• Store states awaiting expansion in a priority queue for efficient
retrieval of minimum f
• Optimal � Guaranteed to find lowest cost sequence, but……

• Problem: No guidance as to how “far” any given state is from
the goal
• Solution: Design a function h() that gives us an estimate of the
distance between a state and the goal

A h(A) = 3

Our best guess is that A is closer
to GOAL than B so maybe it is a
more promising state to expand

START

A

B

C

GOAL

h(A) = 3

h(B) = 6

h(B) = 10

Heuristic Functions
• h() is a heuristic function for the search problem
• h(s) = estimate of the cost of the shortest path

from s to GOAL
• h() cannot be computed solely from the states

and transitions in the current problem � If we
could, we would already know the optimal path!

• h() is based on external knowledge about the • h() is based on external knowledge about the
problem � informed search

• Questions:
1. Typical examples of h?
2. How to use h?
3. What are desirable/necessary properties of h?

Heuristic Functions Example

X x GOAL

The straight-line
distance is lower

from s than from s’
so maybe s has a

better chance to be
on the best path

s’

• h(s) = Linear-geometric distance to GOAL

X

X

START

s

Heuristic Functions Example

28

31

6

4

7

5 2

8

3

1

6

4

7

5

• How could we define h(s)?

s GOAL

First Attempt: Greedy Best First
Search

• Simplest use of heuristic function: Always select the
node with smallest h() for expansion (i.e., f(s) = h(s))

Initialize PQ
Insert START with value h(START) in PQInsert START with value h(START) in PQ
While (PQ not empty and no goal state is in PQ)

Pop the state s with the minimum value of h from PQ
For all s’ in succs(s)

If s’ is not already in PQ and has not already been visited
Insert s’ in PQ with value h(s’)

Problem

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

• What solution do we find in this case?
• Greedy search clearly not optimal, even

though the heuristic function is non-stupid

Trying to Fix the Problem

START

A

B
GOAL

h(A) = 3

f(A) = g(A) + h(A) = 13

g(A) = 10

h(B) = 6

f(B) = g(B) + h(B) = 11 g(A) = 5

• g(s) is the cost from START to s only
• h(s) estimates the cost from s to GOAL
• Key insight: g(s) + h(s) estimates the total cost

of the cheapest path from START to GOAL
going through s

• � A* algorithm

C

Can A* Fix the Problem?

{(START,4)}

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

{(START,4)}
{(A,5)}

(f(A) = h(A) + g(A) = 3 + g(START) + cost(START, A) = 3 + 0 + 2)
{(B,5) (C,7)}

(f(C) = h(C) + g(C) = 1 + g(A) + cost(A, C) = 1 + 2 + 4)
{(C,5)}

(f(C) = h(C) + g(C) = 1 + g(B) + cost(B, C) = 1 + 3 + 1)
{(GOAL,6)}

Can A* Fix the Problem?

{(START,4)}

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

C is placed in the queue with {(START,4)}
{(A,5)}

(f(A) = h(A) + g(A) = 3 + g(START) + cost(START, A) = 3 + 0 + 2)
{(B,5) (C,7)}

(f(C) = h(C) + g(C) = 1 + g(A) + cost(A, C) = 1 + 2 + 4)
{(C,5)}

(f(C) = h(C) + g(C) = 1 + g(B) + cost(B, C) = 1 + 3 + 1)
{(GOAL,6)}

C is placed in the queue with
backpointers {A,START}

A lower value of f(C) is found
with backpointers

{B,A,START}

A* Termination Condition

Queue:

{(B,4) (A,8)}

{(C,4) (A,8)}

S

A

B
1

1

1

h = 3

h = 2
h = 7

h = 8

• Stop when GOAL is popped from the queue!

{(C,4) (A,8)}

{(D,4) (A,8)}

{(A,8) (G,10)}

D

C

G

1

7

1
h = 2

h = 1

A* Termination Condition

Queue:

{(B,4) (A,8)}

{(C,4) (A,8)}

We have
encountered G

before we have a
chance to visit the

branch going
through A. The

problem is that at
each step we use

only an estimate of
the path cost to the

goal

S

A

B
1

1

1

h = 3

h = 2
h = 7

h = 8

• Stop when GOAL is popped from the queue!

{(C,4) (A,8)}

{(D,4) (A,8)}

{(A,8) (G,10)}

goal

D

C

G

1

7

1
h = 2

h = 1

Revisiting States

1

h = 7 A C

B
START 1

1

1

h = 8
h = 3

h = 8
1/2

D

GOAL

7

h = 1
A state that was already in the
queue is re-visited.
How is its priority updated?

Revisiting States

1

h = 7 A C

B
START 1

1

1

h = 8
h = 3

h = 2
1/2

D

GOAL

7

h = 1
A state that had been already
expanded is re-visited.

(Careful: This is a different
example.)

A* Algorithm
(inside loop)

Pop state s with lowest f(s) in queue
If s = GOAL

return SUCCESS
Else expand s:

For all s’ in succs (s):
f’ = g(s’) + h(s’) = g(s) + cost(s,s’) + h(s’)
If (s’ not seen before OR

s’ previously expanded with f(s’) > f’ ORs’ previously expanded with f(s’) > f’ OR
s’ in PQ with with f(s’) > f’)
Promote/Insert s’ with new value f’ in PQ
previous(s’) � s

Else
Ignore s’ (because it has been visited and
its current path cost f(s’) is still the lowest
path cost from START to s’)

Under what Conditions is A*
Optimal?

START

A GOAL

h = 6

h = 7

1
3

{(START,6)}
{(GOAL,3) (A,8)}

Final path:
{START, GOAL}

• Problem: This h() is a poor estimate of
path cost to the goal state

A GOALh = 7
1

{START, GOAL}
with cost = 3

Admissible Heuristics
• Define h*(s) = the true minimal cost to the

goal from s
• h is admissible if

h(s) <= h*(s) for all states s
• In words: An admissible heuristic never • In words: An admissible heuristic never

overestimates the cost to the goal.
“Optimistic” estimate of cost to goal.

A* is guaranteed to find the optimal path
if h is admissible

Consistent (Monotonic) Heuristics

GOAL

s h(s’)

h(s)

h(s) <= h(s’) + cost(s,s’)

s’Cost(s,s’)

Consistent (Monotonic) Heuristics
GOAL

s

s’Cost(s,s’)

h(s’)

h(s)

h(s) <= h(s’) + cost(s,s’)

s’Cost(s,s’)
Sort of triangular inequality
implies that path cost
always increases + need to
expand node only once

Pop state s with lowest f(s) in queue
If s = GOAL

return SUCCESS
Else expand s:

For all s’ in succs (s):
f’ = g(s’) + h(s’) = g(s) + cost(s,s’) + h(s’)
If (s’ not seen before OR

s’ previously expanded with f(s’) > f’ ORs’ previously expanded with f(s’) > f’ OR
s’ in PQ with with f(s’) > f’)
Promote/Insert s’ with new value f’ in PQ
previous(s’) � s

Else
Ignore s’ (because it has been visited and
its current path cost f(s’) is still the lowest
path cost from START to s’)

Examples

x

X

GOAL

s

h(s)

For the navigation problem:
The length of the shortest
path is at least the distance
between s and GOAL �

Euclidean distance is an
admissible heuristic

X

28
31

6
4

7

5 2

8
3

1

6
4
7

5

s GOAL

h(s) ?

What about the puzzle?

5 4

3

6 1 8

7 2

s
2

8

31

6

4

7 5

G
O

A
L

misplaced tiles:misplaced tiles:
h1(s) = 7

distances:
h(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18

Comparing Heuristics

L = 4 steps L = 8 steps L = 12
steps

Iterative
Deepening

112 6,300 3.6 x 106

A* with
heuristic h1

13 39 227

h1 = misplaced tiles

h2 = Manhattan
distance

• Overestimates A* performance because of the
tendency of IDS to expand states repeatedly

• Number of states expanded does not include
log() time access to queue

heuristic h1

A* with
heuristic h2

12 25 73
distance

Example from Russell&Norvig

Comparing Heuristics

h1(s) = 7
h2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18
h2 is larger than h1 and, at same time, A* seems to be more

5 4

3
6 1 8
7 2

s
2

8
31

6
4

7 5
G

O
A

L

h2 is larger than h1 and, at same time, A* seems to be more
efficient with h2.

Is there a connection between these two observations?

h2 dominates h1 if h2(s) >= h1(s) for all s

For any two heuristics h2 and h1 :
If h2 dominates h1 then A* is more efficient (expands
fewer states) with h2

Intuition: since h <= h*, a larger h is a better approximation of the true path cost

Limitations

• Computation: In the worst case, we may
have to explore all the states � O(N)

• The good news: A* is optimally efficient �
For a given h(), no other optimal algorithm For a given h(), no other optimal algorithm
will expand fewer nodes

• The bad news: Storage is also potentially
exponential � O(N)

IDA* (Iterative Deepening A*)
• Same idea as Iterative Deepening DFS except use f(s) to

control depth of search instead of the number of transitions
• Example, assuming integer costs:

1. Run DFS, stopping at states s such that f(s) > 0
Stop if goal reached

2. Run DFS, stopping at states s such that f(s) > 1
Stop if goal reachedStop if goal reached

3. Run DFS, stopping at states s such that f(s) > 2
Stop if goal reached

……..Keep going by increasing the limit on f by 1 every time

• Complete (assuming we use loop-avoiding DFS)
• Optimal
• More expensive in computation cost than A*
• Memory order L as in DFS

Summary
• Informed search and heuristics
• First attempt: Best-First Greedy search
• A* algorithm

– Optimality
– Condition on heuristic functions– Condition on heuristic functions
– Completeness
– Limitations, space complexity issues
– Extensions

Nils Nilsson. Problem Solving Methods in Artificial
Intelligence. McGraw Hill (1971)
Judea Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving (1984)
Chapters 3&4 Russel & Norvig

