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States, Actions, Observations

Passive Controlled

Fully Observable Markov Model Markov Decision
Process (MDP)

Hidden State Hidden Markov Model | Partially Observable
- HMM MDP (POMDP)




Markov Model — Observation
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.- States
 Rewards
 Transition probabilities



Markov Systems with Rewards

Finite set of n states, s,

Probabilistic state matrix, P, p;,

— Probabilty of transition from s to s;j
“Goal achievement” - Reward for each state, r,

Discount factor - vy



“Solving” Markov Systems with
Rewards

 Find “value of each state”
 Process:

— Start at state s,
— Receive immediate reward r,

— Move randomly to a new state according to
the probability transition matrix

— Future rewards (of next state) are discounted
by v



Solving a Markov System with Rewards

« V*(s;) - expected discounted sum of future rewards
starting in state s,

o VH(s) =t ylp Vi (sy) * ppV7(sy) + o p V()]



Value Iteration to Solve a Markov System
with Rewards

V(s,) - expected discounted sum of future rewards
starting in state s, for one step.

V2(s,) - expected discounted sum of future rewards
starting in state s, for ftwo steps.

Vi(s) - expected discounted sum of future rewards
starting in state s, for k steps.

As k— V¥ s) — 1V (s,)

Stop when difference of £ + 1 and k& values is smaller
than some e.



3-State Example

1.2 1/2
1/2 ( WIND == HAIL 1/2
\ 0 s K -3
1/2 1/2



3-State Example: Values y = 0.5

lteration SUN WIND HAIL

0 0 0 0

| 4 0 -8

2 5.0 -1.0 -10.0

3 5.0 -1.25 -10.75

4 4.9375 -1.4375 -11.0

5 4,875 -1.515625 | -11.109375
6 4.8398437 | -1.5585937 | -11.15625
7 4.8203125 | -1.5791016 | -11.178711
8 4,.8103027 | -1.5895996 | -11.189453
Q 4805176 | -1.5947876 | -11.194763
10 4.802597 | -1.5973069 | -11.197388
11 4.8013 -1.5986977 | -11.198696
12 4.8006506 | -1.599349 [ -11.199348
13 4.8003254 | -1.5996745 | -11.199675
14 4800163 | -1.5998373 | -11.199837
15 4,.8000813 | -1.5999185 | -11.199919



3-State Example: Values y = 0.9

lteration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 5.8 -1.8 -11.6
3 5.8 -2.6100001 [ -14.030001
4 5.4355 -3.7035 -15.488001
S 4.7794 -4.5236254 | -16.636175
6 4.1150985 -5.335549 -17.621912
7 3.4507973 | -6.0330653 | -18.285858
8 28379793 | -6.6757774 | -18.943516
Q 2.272991 -71.247492 -19.528683
50 -2.8152928 | -12.345073 | -24.633476
o) -2.8221645 | -12.351946 | -24.640347
52 -2.8283496 | -12.3581295 | -24.646532
86 -2.882461 -12.412242 | -24.700644
87/ -2.882616 -12.412397 | -24.700798
88 -2.8827558 | -12.412536 -24.70094
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3-State Example: Values y = 0.2

lteration SUN WIND HAIL
0 0 0 0
] 4 0 -8
2 4.4 -0.4 -8.8
3 4.4 -0.44000003 -8.92
4 4,396 -0.452 -8.936
5 4.3944 -0.454 -8.0388
6 4.39404 -0.45443997 | -8.93928
7 4.39396 -0.45452395 | -8.939372
8 4,.393944 -0.4545412 | -8.939389
Q 4,3930404 | -0.45454454 | -8.939393
10 4,3939395 | -0.45454526 | -8.939394
11 4,3939395 | -0.45454547 | -8.9393%94
12 4.3930395 | -0.45454547 | -8.939394
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Markov Decision Processes

Finite set of states, s4,..., s,
Finite set of actions, ay,..., a

m

Probabilistic state,action transitions:

pl.’]‘. = prob (next = ‘ current = s, and take action a, )

Reward for each state, r,,..., r,
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Solving an MDP

A policy is a mapping from states to actions.

Optimal policy - for every state, there is no other action
that gets a higher sum of discounted future rewards.

For every MDP there exists an optimal policy.
Solving an MDP is finding an optimal policy.

A specific policy converts an MDP into a plain Markov
system with rewards.
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Deterministic MDP Example
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(Reward on unlabelled transitions is zero.)
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Nondeterministic Example
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Solving MDPs

 Find the value of each state and the action
to take from each state.

* Process:

—Start in state s,

—Receive immediate reward r,
—Choose action g, € 4

—Change to state s; with probability
—Discount future rewards
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Policy lteration

Start with some policy my(s;).

Such policy transforms the MDP into a plain Markov
system with rewards.

Compute the values of the states according to the
current policy.

Update policy:
( ) arg max {r, +yZp“V”O

Keep computing

Stop when &, , = m,.
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Value lteration

V*(s;) - expected discounted future rewards, if we start
from state s, and we follow the optimal policy.

Compute V* with value iteration:

— V*(s,) = maximum possible future sum of rewards
starting from state s, for £ steps.

Bellman’s Equation:

Dynamic programming
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Summary

Markov model for state/action transitions.
Markov systems with reward - goal achievement
Markov decision processes - added actions

Value, policy iteration
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