15-381: AI Markov Systems and Markov Decision Processes

November 11, 2009

Manuela Veloso

Carnegie Mellon

States, Actions, Observations

	Passive	Controlled
Fully Observable	Markov Model	Markov Decision Process (MDP)
Hidden State	Hidden Markov Model - HMM	Partially Observable MDP (POMDP)

Markov Model – Observation

- States
- Rewards
- Transition probabilities

Markov Systems with Rewards

- Finite set of n states, s_i
- Probabilistic state matrix, P, p_{ij}

– Probability of transition from s_i to s_j

- "Goal achievement" Reward for each state, r_i
- Discount factor γ

"Solving" Markov Systems with Rewards

- Find "value of each state"
- Process:
 - Start at state s_i
 - Receive immediate reward r_i
 - Move randomly to a new state according to the probability transition matrix
 - Future rewards (of next state) are discounted by γ

Solving a Markov System with Rewards

 V*(s_i) - expected discounted sum of future rewards starting in state s_i

•
$$V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$$

Value Iteration to Solve a Markov System with Rewards

- $V^{1}(s_{i})$ expected discounted sum of future rewards starting in state s_{i} for one step.
- $V^2(s_i)$ expected discounted sum of future rewards starting in state s_i for two steps.
- $V^k(s_i)$ expected discounted sum of future rewards starting in state s_i for k steps.

• As
$$k \to \infty V^k(s_i) \to V^*(s_i)$$

 Stop when difference of *k* + 1 and *k* values is smaller than some *∈*.

3-State Example

3-State Example: Values γ = 0.5

lte	eration	SUN	WIND	HAIL
	0	0	0	0
	1	4	0	-8
	2	5.0	-1.0	-10.0
	3	5.0	-1.25	-10.75
	4	4.9375	-1.4375	-11.0
	5	4.875	-1.515625	-11.109375
	6	4.8398437	-1.5585937	-11.15625
	7	4.8203125	-1.5791016	-11.178711
	8	4.8103027	-1.5895996	-11.189453
	9	4.805176	-1.5947876	-11.194763
	10	4.802597	-1.5973969	-11.197388
	11	4.8013	-1.5986977	-11.198696
	12	4.8006506	-1.599349	-11.199348
	13	4.8003254	-1.5996745	-11.199675
	14	4.800163	-1.5998373	-11.199837
	15	4.8000813	-1.5999185	-11.199919

3-State Example: Values γ = 0.9

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.8	-1.8	-11.6
3	5.8	-2.6100001	-14.030001
4	5.4355	-3.7035	-15.488001
5	4.7794	-4.5236254	-16.636175
6	4.1150985	-5.335549	-17.521912
7	3.4507973	-6.0330653	-18.285858
8	2.8379793	-6.6757774	-18.943516
9	2.272991	-7.247492	-19.528683
50	-2.8152928	-12.345073	-24.633476
51	-2.8221645	-12.351946	-24.640347
52	-2.8283496	-12.3581295	-24.646532
86	-2.882461	-12.412242	-24.700644
87	-2.882616	-12.412397	-24.700798
88	-2.8827558	-12.412536	-24.70094

3-State Example: Values γ = 0.2

SUN	WIND	HAIL
0	0	0
4	0	-8
4.4	-0.4	-8.8
4.4	-0.44000003	-8.92
4.396	-0.452	-8.936
4.3944	-0.454	-8.9388
4.39404	-0.45443997	-8.93928
4.39396	-0.45452395	-8.939372
4.393944	-0.4545412	-8.939389
4.3939404	-0.45454454	-8.939393
4.3939395	-0.45454526	-8.939394
4.3939395	-0.45454547	-8.939394
4.3939395	-0.45454547	-8.939394
	SUN 0 4 4.4 4.396 4.39404 4.39396 4.3939404 4.3939404 4.3939395 4.3939395 4.3939395	SUNWIND00404.4-0.44.4-0.440000034.396-0.4524.3944-0.4544.39404-0.454439974.39396-0.454523954.393944-0.45454523954.3939404-0.45454523954.3939395-0.4545454124.3939395-0.4545454544.3939395-0.4545454544.3939395-0.45454545474.3939395-0.45454547

Markov Decision Processes

- Finite set of states, s_1, \ldots, s_n
- Finite set of actions, a_1, \ldots, a_m
- Probabilistic state, action transitions:

 $p_{ij}^{k} = \text{prob}(\text{next} = s_{j} \mid \text{current} = s_{i} \text{ and take action } a_{k})$

• Reward for each state, r_1, \ldots, r_n

Solving an MDP

- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Deterministic MDP Example

(Reward on unlabelled transitions is zero.)

Nondeterministic Example

Solving MDPs

- Find the value of each state and the action to take from each state.
- Process:
 - -Start in state s_i
 - -Receive immediate reward r_i
 - -Choose action $a_k \in A$
 - -Change to state s_i with probability
 - Discount future rewards

Policy Iteration

- Start with some policy $\pi_0(s_i)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to the current policy.
- Update policy:

$$\pi_1(s_i) = \arg\max_a \{r_i + \gamma \sum_j p_{ij}^a V^{\pi_0}(s_j)\}$$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Value Iteration

- $V^*(s_i)$ expected discounted future rewards, if we start from state s_i and we follow the optimal policy.
- Compute *V** with value iteration:
 - $V^k(s_i)$ = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_i) = \max_k \{r_i + \gamma \sum_{j=1}^N p_{ij}^k V^n(s_j)\}$$

• Dynamic programming

Summary

- Markov model for state/action transitions.
- Markov systems with reward goal achievement
- Markov decision processes added actions
- Value, policy iteration