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States, Actions, Observations

Passive Controlled

Fully Observable Markov Model Markov Decision 

Process (MDP)

Hidden State Hidden Markov Model Partially Observable 
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Hidden State Hidden Markov Model 

- HMM

Partially Observable 

MDP (POMDP)



Markov Model – Observation
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• States

• Rewards 

• Transition probabilities



Markov Systems with Rewards

• Finite set of n states, si

• Probabilistic state matrix, P, pij 

– Probabilty of transition from si to sj

• “Goal achievement” - Reward for each state, ri
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• Discount factor - γ



“Solving” Markov Systems with 

Rewards
• Find “value of each state”

• Process:

– Start at state si
– Receive immediate reward ri
– Move randomly to a new state according to 
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– Move randomly to a new state according to 

the probability transition matrix

– Future rewards (of next state) are discounted 

by γ



Solving a Markov System with Rewards

• V*(si) - expected discounted sum of future rewards 

starting in state si

• V*(si) = ri + γ[pi1V*(s1) + pi2V*(s2) + ... pinV*(sn)]
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Value Iteration to Solve a Markov System 

with Rewards
• V1(si) - expected discounted sum of future rewards 

starting in state si for one step.

• V2(si) - expected discounted sum of future rewards 

starting in state si for two steps.

• ...

• Vk(s ) - expected discounted sum of future rewards 
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• Vk(si) - expected discounted sum of future rewards 

starting in state si for k steps.

• As k → ∞Vk(si) → V*(si)

• Stop when difference of k + 1 and k values is smaller 

than some ∈.



3-State Example
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3-State Example: Values γ = 0.5
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3-State Example: Values γ = 0.9
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3-State Example: Values γ = 0.2
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Markov Decision Processes

• Finite set of states, s1,..., sn

• Finite set of actions, a1,..., am

• Probabilistic state,action transitions:

)action   takeand  current    (next  prob k assp ===
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• Reward for each state, r1,..., rn

)action   takeand  current    (next  prob kij
k
ij assp ===



Solving an MDP

• A policy is a mapping from states to actions.

• Optimal policy - for every state, there is no other action 

that gets a higher sum of discounted future rewards.

• For every MDP there exists an optimal policy.

• Solving an MDP is finding an optimal policy.
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• Solving an MDP is finding an optimal policy.

• A specific policy converts an MDP into a plain Markov 

system with rewards.



Deterministic MDP Example
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(Reward on unlabelled transitions is zero.)



Nondeterministic Example

0 500
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10 50



Solving MDPs

• Find the value of each state and the action 

to take from each state.

• Process:

–Start in state si
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–Start in state si
–Receive immediate reward ri
–Choose action ak ∈ A

–Change to state sj with probability 

–Discount future rewards



Policy Iteration

• Start with some policy π0(si).

• Such policy transforms the MDP into a plain Markov 

system with rewards. 

• Compute the values of the states according to the 

current policy.
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• Update policy:

• Keep computing 

• Stop when πk+1 = πk.
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Value Iteration

• V*(si) - expected discounted future rewards, if we start 

from state si, and we follow the optimal policy.

• Compute V* with value iteration:

– Vk(si) = maximum possible future sum of rewards 

starting from state si for k steps.
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• Bellman’s Equation:

• Dynamic programming
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Summary

• Markov model for state/action transitions.

• Markov systems with reward - goal achievement

• Markov decision processes - added actions

• Value, policy iteration
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