

Online Learning Scenario

You are given samples one by one

Your classifier needs to output a label immediately

Afterwards, the classifier is told the true label of the sample and gets to learn based on that

GOAL: Minimize the total number of mistakes made by the classifier

You can make a ton of money in this scenario with the stock market. You try to predict if a stock will go up or down. Later, you can see if the stock went up or down.

$\begin{array}{l} \textbf{Example: OR} \\ \textbf{Given n-dimensional bit vectors:} \\ (0,1,1,0,0,1,1) \rightarrow 0 \\ (1,1,0,0,1,1,1) \rightarrow 1 \\ (1,0,0,1,1,1,0) \rightarrow 1 \\ \textbf{Goal: predict label after each sample is given and make few mistakes} \\ \textbf{Suppose we know the true label is always calculated as the OR of a few specific bits, but we don't know which bit positions those are} \end{array}$

If you run this algorithm forever, how many errors can you make?

Combining Multiple Classifiers

Imagine we have three different classifiers, and they give these outputs on x:

$$C_1(x) = 1 \quad C_2(x) = 0 \quad C_3(x) = 1$$

What should we output?

1 seems like a pretty good number to output, but C2 might be a must better classifier, so a simple majority might not be the best answer

Using "Expert" Advice				
Predicting the stock market. Imagine we solicit n "experts" for their advice (will it go up or down?)				
Expert 1	Expert 2	Expert 3	Neighbor's Dog	Truth
down	up	up	up	up
down	up	up	down	down
Imagine there is an expert that is always right. Can we make almost as few mistakes as them?				

Here, the always right expert is the neighbors dog. We start off not knowing who is always right. How can we figure out where it is?

The Halving Algorithm

Output the majority vote of all experts who have been always right until now

How many mistakes can this algorithm ever make?

Whenever there is a mistake we throw away at least half of the experts

At most log₂(n) mistakes

This does not necessarily mean that we can find the always right expert in log(n) iterations

What if there is no expert that is always right?

Proposal #1: Iterated Halving Algorithm. Same as before, but once we've crossed off all experts, restart

How well will this do compared to the best expert?

Makes $log_2(n)[OPT +1]$ mistakes, where OPT is the number of mistakes of the best expert

log(n) mistakes before restarting each time. How many restarts? No more than [OPT+1], where OPT is the number of mistakes the best expert makes.

Proposal #2: Weighted Majority Algorithm Start with all experts having weight 1 Predict based on weighted majority Penalize mistakes by cutting weight in half

How do we know halving the weight is best? Maybe some other decrease in weight is better?

Randomized Weighted Majority

Instead of taking majority vote, use weights as probabilities (e.g., if 70% of the weight is on "up", chose up with 70% chance)

Maybe halving the weight is not optimal? Let's multiply the weight by $(1-\epsilon)$ to find the optimal ϵ

Say at time t we have a fraction F_t of weight on the experts that made a mistake Probability of making a mistake? F_t If a mistake is made, how much weight is removed? ϵF_t $W_{final} = n(1-\epsilon F_1)(1-\epsilon F_2)...$ $ln(W_{final}) = ln(n) + \Sigma_t[ln(1-\epsilon F_t)] \leq ln(n) - \epsilon \Sigma_t F_t$ $= ln(n) - \epsilon M$ If best expert has m mistakes, $ln(W_{final}) > ln((1-\epsilon)^m)$ So, $ln(n) - \epsilon M > m ln(1-\epsilon)$ Which solves to $M \leq (1 + \epsilon/2)m + (1/\epsilon)ln(n)$