For rules on collaboration and late policies, please see the course web page.

1) 35 points. An MDP has the following states and rewards R(s):

State	Reward
SCS	0
Google	80
Grad School	20
Startup	30
Hedge Fund	150
Flipping Burgers	10
Professor	100
Yachts and Bottle Service	500

And the following actions: Work Hard, Goof Off, Web 1.0, Web 2.0, and Insider Trade. You may abbreviate these as long as what you mean is clear.

The MDP has the following positive state transition probabilities T(s,a,s'). All other tuples have zero probability. "*" indicates "any action".

State	Action	Next State	Probability
SCS	Work Hard	SCS	.10
SCS	Work Hard	Google	.30
SCS	Work Hard	Startup	.20
SCS	Work Hard	Hedge Fund	.10
SCS	Work Hard	Grad School	.30
SCS	Goof Off	SCS	.25
SCS	Goof Off	Flipping Burgers	.60
SCS	Goof Off	Grad School	.15
Google	Work Hard	Google	.95
Google	Work Hard	Grad School	.05
Google	Goof Off	Google	.8
Google	Goof Off	Grad School	.1
Google	Goof Off	Flipping Burgers	.1
Grad School	Work Hard	Professor	.2
Grad School	Work Hard	Hedge Fund	.2
Grad School	Work Hard	Startup	.2
Grad School	Work Hard	Grad School	.4
Grad School	Goof Off	Grad School	.8
Grad School	Goof Off	Professor	.1
Grad School	Goof Off	Flipping Burgers	.1
Startup	Web 1.0	Grad School	.25
Startup	Web 1.0	Flipping Burgers	.1
Startup	Web 1.0	Yachts and Bottle Service	.05
Startup	Web 1.0	Startup	.6
Startup	Web 2.0	Grad School	.1
Startup	Web 2.0	Flipping Burgers	.05
Startup	Web 2.0	Yachts and Bottle Service	.1
Startup	Web 2.0	Startup	.75
Hedge Fund	Work Hard	Grad School	.1
Hedge Fund	Work Hard	Yachts and Bottle Service	.1
Hedge Fund	Work Hard	Hedge Fund	.8
Hedge Fund	Goof Off	Flip Burgers	.1
Hedge Fund	Goof Off	Yachts and Bottle Service	.1
Hedge Fund	Goof Off	Grad School	.3
Hedge Fund	Goof Off	Hedge Fund	.5
Hedge Fund	Insider Trade	Flipping Burgers	.25
Hedge Fund	Insider Trade	Hedge Fund	.5
Hedge Fund	Insider Trade	Yachts and Bottle Service	.25
Flipping Burgers	*	Flipping Burgers	1
Professor	*	Professor	1
Yachts and Bottle Service	*	Yachts and Bottle Service	1

a. Use value iteration to solve for the values of all states when $\gamma = .8$. Recall that in value iteration, the value of state s at iteration t is

$$V_t(s) = \max_{a} R(s) + \gamma \sum_{s'} T(s, a, s') V_{t-1}(s')$$

and set $V_0(s) = 0$ for every state. Loop until convergence.

(Values approximate) SCS = 476.5 Google = 428.2 Grad School = 569.1 Startup = 693.8 Hedge Fund = 1100 Flipping Burgers = 50 Professor = 500 Yachts and Bottle Service = 2500.

- **b.** What is the optimal policy?
 - "Work Hard" for all states except Hedge Fund (Insider Trade) and Startup (Web 2.0).
- **c.** What are the optimal policy and values when $\gamma = 0$? In general, what happens when we solve an MDP with $\gamma = 0$?

Every policy is optimal, because when $\gamma=0$ you only care about the present state and in this MDP actions do not impact rewards. In general, when rewards depend on states and action choices, you will do whatever action corresponds to the highest immediate payout.

2) 25 points. Imagine an agent is navigating a 3x3 grid, with a total of 9 states, arranged as follows:

s_1	s_2	s_3
s_4	s_5	s_6
s_7	s_8	s_9

There are some basic rules to be aware of:

- One of the states is the goal state. If an agent begins the time step in the goal state, she receives a reward of 1.
- The 3x3 grid is surrounded by a barrier, which repels moves and keeps agents inside the grid. Three reflective barriers are present on the grid's interior.
- Agents can only move up, down, left, or right. If an agent moves into a barrier, the barrier reflects them and they remain in their current state. If an agent is not obstructed, they move to the next state with probably .9, and remain in their current state with probability .1.

Consider the following Q-table, where the values are run to convergence with $\gamma = .5$.

State x Action	Q-value	State x Action	Q-value
s_1 down	.213	s_5 right	.947
s_1 right	.106	s_5 down	.474
s_2 down	.449	s_6 up	1.53
s_2 left	.225	s_6 left	1.53
s_2 right	.449	s_6 down	2
s_3 left	.249	s_7 up	.215
s_3 down	.947	s_7 right	.056
s_4 up	.118	s_8 left	.101
s_4 down	.118	s_8 up	.051
s_4 right	.449	s_8 right	.027
s_5 up	.249	s_9 left	.048
s_5 left	.249	s_9 up	.024

Feel free to draw pictures to answer the following questions.

a. For each state s describe the optimal policy $\pi^*(s)$.

Here is an optimal policy:

\downarrow	\downarrow	\downarrow
\rightarrow	\rightarrow	\
\uparrow	\leftarrow	\leftarrow

b. Which state is the goal state? s_6 .

c. Between which states are the three internal barriers? $(s_1, s_2), (s_5, s_8), (s_6, s_9).$

3) 25 points. Imagine two drivers playing *chicken*, a game where they drive towards one another with their cars. Each driver has three actions — they can choose to go straight, or to turn left or right. For simplicity, we standardize directions according to the perspective of an overhead observer. Thus, if both drivers select the same action, they will crash. At the same time, each driver wants to go straight, to seem tough and fearless. Utilities are given by the following table:

Utility	Turn Left	Straight	Turn Right
Turn Left	(-20,-20)	(-5,10)	(0,0)
Straight	(10,-5)	(-10,-10)	(10,-5)
Turn Right	(0,0)	(-5,10)	(-20,-20)

These are in the format (row player, column player).

a. What are the pure strategy Nash equilibria of this game?

Four pure strategy equilibria corresponding to one player going straight and the other player going left or right.

- **b.** Does the game have any mixed strategy Nash equilibria? What are they? Yes. Both players go (L, S, R) = (.1, .8, .1).
- **c.** Does either player have a dominant strategy? **No.**
- **d.** Imagine that the row player has the ability to credibly choose to go straight (say, by removing their steering wheel entirely), effectively removing actions from their choice set. Would the row player choose to do this? Why or why not? What does your answer say about the differences between single-agent and multi-agent contexts?

Yes, the row player would choose to do this, because the column player will then go left or right and secure the highest payoff for the row player. In a single-agent setting, removing actions from your choice set never makes you better off (you might remove the optimal action). However, in a multiagent setting you can be better off by having fewer choices.

4) 15 points. In a *second-price auction*, the item is given to the highest bidder at the price of the second-highest bid. For instance, imagine Alice is auctioning off a pair of sneakers, Bob bids 10 dollars, and Carl bids 5 dollars. Bob would win the sneakers and pay Alice 5 dollars. With small tweaks to accommodate discretization, this is the rule used by eBay.

We can generalize a second-price auction as follows. Assume that all bidders have quasilinear utility, so that bidder i's utility for receiving the good and paying π is

$$u_i \equiv v_i - \pi$$

and that bidders have zero utility for receiving nothing and paying nothing.

Argue from first principles that it is a dominant strategy to bid your true value in a secondprice auction, so that you would always want to reveal your true value to the auctioneer, regardless of the actions of the other bidders. HINT: Why would a bidder never gain from bidding higher than her true value? Why would a bidder never gain from bidding lower?

If an agent bids more than their value, they will either continue to win the auction at the same price, continue to lose the auction, or win the auction at a price higher than their valuation (negative utility). If an agent bids less than their true value, they will either continue to win the auction at the same price, continue to lose the auction, or lose an auction they were winning at a price less than their true valuation (thereby forgoing positive utility for zero utility). Since in all cases the agent's utility does not improve by manipulation, and in some cases utility is lowered, reporting truthfully is a dominant strategy in a second-price auction.