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Resultant
The origin of the resultant lies in papers by Euler (1748) and Bezout (1764) for determining when two 

polynomials have a non-trivial common factor. However, we will follow the elegant derivation by 

Sylvester (1840). Let us start with a simple example.

Consider a system of quadratic equations

f = a2 x2 + a1 x + a0 = 0

g = b2 x2 + b1 x + b0 = 0

If it has a common solution, f  and g  must have a common factor h

f = q1 * h

g = q2 * h

We can write

f * q2 = g * q1

or

a2 x2 + a1 x + a0 (c1 x + c0) = b2 x2 + b1 x + b0 (-d1 x - d0)

where coefficients ck and dk are unknown. Expand it and then collect terms wrt x

(a2 c1 + b2 d1) x3 + (a2 c0 + a1 c1 + b2 d0 + b1 d1) x2 + (a1 c0 + a0 c1 + b1 d0 + b0 d1) x+ a0 c0 + b0 d0

Next, we equal coefficient by x to zero to get the following system

a2 c1 + b2 d1 = 0

a2 c0 + a1 c1 + b2 d0 + b1 d1 = 0

a1 c0 + a0 c1 + b1 d0 + b0 d1 = 0

a0 c0 + b0 d0 = 0

or
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0 c0 + a2 c1 + 0 d0 + b2 d1 = 0

a2 c0 + a1 c1 + b2 d0 + b1 d1 = 0

a1 c0 + a0 c1 + b1 d0 + b0 d1 = 0

a0 c0 + 0 c1 + b0 d0 + 0 d1 = 0

or, in matrix form

0 a2 0 b2

a2 a1 b2 b1

a1 a0 b1 b0

a0 0 b0 0

c0

c1

d0

d1

= 0

The system has a non-trivial solution when the determinate is zero

0 a2 0 b2

a2 a1 b2 b1

a1 a0 b1 b0

a0 0 b0 0

= 0

By transposition

a2 a1 a0 0
0 a2 a1 a0

b2 b1 b0 0
0 b2 b1 b0

= 0

This determinate is called the Sylvester resultant.

General case. Let

f (x) = 
k=0

m

ak xk and g(x) = 
k=0

n

bk xk

be non-constant polynomials.

Definition. The Sylvester matrix of f  and g is an (m+ n) x(m+ n) matrix of coefficients defined by 

(assuming m ≥ n)

am am-1 ... ... am-n+1 am-n ... ... a0 ... ... 0
0 am am-1 ... ... am-n+1 ... ... a1 a0 ... 0
... ... ... ... ... ... ... ... ... ... ... ...
0 ... ... ... am am-1 ... ... an-1 ... a1 a0

bn bn-1 ... ... b1 b0 0 ... 0. ... ... 0
0 bn bn-1 ... ... b1 b0 ... 0. ... ... 0
... ... ... ... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... ... ... bn-1 ... b1 b0

Observation. 
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The upper part (that involves only ak) has n = deg(g) rows.

The bottom part (that involves only bk) has m = deg( f ) rows.

Example. Consider

f (x) = x4 - 3 x3 + 2 x+ 1

g(x) = x3 - 1

The Sylvester matrix is

1 -3 0 2 1 0 0
0 1 -3 0 2 1 0
0 0 1 -3 0 2 1
1 0 0 -1 0 0 0
0 1 0 0 -1 0 0
0 0 1 0 0 -1 0
0 0 0 1 0 0 -1

Definition. The resultant resx( f , g) of two univariate polynomials f  and g over an intergral domain 

(a commutative ring with identity having no zero-divisors) is the determinant of the Sylvester matrix.

For the above example, the determinate is 

Det

1 -3 0 2 1 0 0
0 1 -3 0 2 1 0
0 0 1 -3 0 2 1
1 0 0 -1 0 0 0
0 1 0 0 -1 0 0
0 0 1 0 0 -1 0
0 0 0 1 0 0 -1



19

and resultant is

Resultantx4 - 3 x3 + 2 x + 1, x3 - 1, x

19

Exercise. Write the Sylvester matrix for

f (x) = x4 - 3 x3 + 2 x+ 1

g(x) = 1
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We have showed so far

resx( f , g) = 0 ⟹ det(S) = 0

Theorem. 

Two polynomials f  and g have non-trivial common factors ⟺ resx( f , g) = 0.

Proof. Let 

f (x) = 
k=0

m

ak xk and g(x) = 
k=0

n

bk xk

be non-constant polynomials and m ≥ n. Then equation

u * f + v * g = 0

deg(u) < deg(g)

deg(v) < deg( f )

has a solution iff f  and g have common factors. Rewrite the above equation in a polynomial form

un-1 xn-1 + ...+ u0 (am xm + ...+ a0) + vm-1 xm-1 + ...+ v0 (bn xn + ...+ b0) = 0

Expanding it and then equating coefficients by x to zero

xm+n-1 : un-1 am + vm-1 bn

xm+n-2 : un-1 am-1 + un-2 am + vm-1 bm-1 + vm-2 bm

xn-1 : un-1 a0 + un-2 a1 + ... + u0 an-1 + v0 bn-1 + v1 bn-2

gives the sytem of equation that can be written in a matrix form as follows

(un-1, ..., u0, vm-1, ..., v0)

am am-1 ... ... am-n+1 am-n ... ... a0 ... ... 0
0 am am-1 ... ... am-n+1 ... ... a1 a0 ... 0
... ... ... ... ... ... ... ... ... ... ... ...
0 ... ... ... am am-1 ... ... an-1 ... a1 a0

bn bn-1 ... ... b1 b0 0 ... 0. ... ... 0
0 bn bn-1 ... ... b1 b0 ... 0. ... ... 0
... ... ... ... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... ... ... bn-1 ... b1 b0

= 0

The system  V . S  has a non-trivial solution when det(S) = 0. QED.

Example.

Resultantx5 - 3 x4 + 2 x3 - 4 x2 + 4, x5 + 2 x3 - x2 - 2, x

0
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If two polynomials indeed have common roots, they can be found by a GCD computation

PolynomialGCDx5 - 3 x4 + 2 x3 - 4 x2 + 4, x5 + 2 x3 - x2 - 2

-2 + 2 x - x2 + x3

■ Computing  resultants

Theorem 1. 

resx( f , g) = (-1)m n resx(g, f )

Proof.

We need to count the number of exchanges in the Sylvester matrix. This is somewhat similar to the 

bubble sort. Start with the top row and move to the bottom. It requires n+m- 1 swaps. We do this for 

the first n rows. So, the total number is n (n+m- 1) = n m + n (n- 1). Each swap introduces (-1) 

factor. QED.

Theorem 2. 

If g(x) = c is a constant, then

resx( f , c) = cm

Proof.

The Sylvester matrix is of size m xm and consists of all zeros except the main diagonal with c on it 

(in each row). QED.

Theorem 3. 

If deg(g) ≥ deg( f )

g = f * q+ r, k = deg(r)

then

resx( f , g) = LC( f )n-k resx( f , r)

Proof. Since g = f * q+ r we replace all bk coefficients of g(x) with r = g- f q. The determinant won't 

change, because this operation corresponds to subtracting linear combinations of rows. Result of this 

subtraction will lead to to (n- k) x(n- k) zeros in the left lower corner of the Sylvester matrix.

S = 
R *

0 S1


Here R is a tringular matrix. As in the original Sylvester matrix S, the main diagonal of R consists of 
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LC( f ).

Thus,

det(S) =
R *

0 S1
= LC( f )n-k det(S1)

QED.

These three theorems immediately lead to the recursive algorithm for computing a resultant.

■ Example.

Compute the resultant of the following polynomials

f = 2 x5 - 3 x4 + 2 x3 - 4 x2 + 4;

g = x5 + 2 x3 - x2 - 3;

step 1. Divide g by f

PolynomialRemainderx5 + 2 x3 - x2 - 3, 2 x5 - 3 x4 + 2 x3 - 4 x2 + 4, x

-5 + x2 + x3 +
3 x4

2

g =
3 x4

2
+ x3 + x2 - 5 (mod f )

Hence

resx( f , g) = 25-4 resx f , r1 =
3 x4

2
+ x3 + x2 - 5

Applying theorem 1

resx( f , g) = 2 resx( f , r1) = 2 (-1)5*4 resx(r1, f ) = 2 resx(r1, f )

step 2. Divide f  by r1

f =
32 x3

9
-

10 x2

9
+

20 x

3
-

94

9
(mod r1)

Hence

resx(r1, f ) =
3

2

5-3

resx r1, r2 =
32 x3

9
-

10 x2

9
+

20 x

3
-

94

9

and
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resx( f , g) = 2
3

2

2

resx(r1, r2) = 2
3

2

2

resx(r2, r1)

step 3. Divide r1 by r2

r1 = -
693 x2

512
+

423 x

256
-

351

512
(mod r2)

Hence

resx(r2, r1) =
32

9

4-2

resx r2, r3 = -
693 x2

512
+

423 x

256
-

351

512

and

resx( f , g) = 2
3

2

2 32

9

2

resx(r2, r3) = 2
3

2

2 32

9

2

resx(r3, r2)

step 4. Divide r2 by r3

r2 =
52 224 x

5929
-

644 608

53 361
(mod r3)

Hence

resx(r3, r2) = -
693

512

3-1

resx r3, r4 =
52 224 x

5929
-

644 608

53 361

and

resx( f , g) = 2
3

2

2 32

9

2

-
693

512

2

resx(r4, r3)

step 5. Divide r3 by r4

r3 = -
46 275 845

47 941 632
(mod r4)

Hence

resx(r4, r3) =
52 224

5929

2-0

resx r4, r5 = -
46 275 845

47 941 632

and

resx( f , g) = 2
3

2

2 32

9

2 693

512

2 52 224

5929

2

resx(r4, r5)

step 6. We terminate computation by applying theorem 2

resx r4, -
46 275 845

47 941 632
= -

46 275 845

47 941 632

deg(r4)
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resx( f , g) = 2
3

2

2 32

9

2 693

512

2 52 224

5929

2

-
46 275 845

47 941 632
= -7805
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