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Squarefree Factorization

Integration - the main idea

The idea is to find a, b, c, d Î F@xD such that 

à p

q
dx =

c

d
+ à a

b
dx

where degHaL < degHbL and b is squarefree Hi.e. GCDHb, b¢L = 1L. 
In other words, we split the integral into a rational and logarithmic parts.

We compute as much of integrand as possible in a given field and then compute the minimal exten-
sion (algebraic and/or log) necessary to express the integral.

The algorithm proceeds as follows. Applying Euclidean division 

p = q * s + r,   

gcdHr, qL = 1, degHrL < degHqL
or

p

q
= s +

r

q

we have

à p

q
= à s + à r

q

Polynomial integration Ù s is trivial. We compute the squarefree factorization of q

q = q1 * q2
2 * ... qm

m
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à r

q
= à r

q1 * q2
2 * ... qm

m

where m ³ 2 (otherwise, q is squarefree). The next step is to decrease the degree of a denominator

à 1

q1 * q2
2 * ... qm

m
® à 1

q1 * q2
2 * ... qm

m-1
® ... ® à 1

q1 * q2 * ... qm

Hermite-Ostrogradsky's Algorithm reduces exponents of each irreducible qk  to 1

We compute as much of integrand as possible in a given field and then compute the minimal exten-
sion (algebraic and/or log) necessary to express the integral.

Squarefree Factorization

Definition. We say that f  is  squarefree if it has no proper quadratic divisors.

Definition.The squarefree factorization of f HxL is
f HxL = ä

k=1

n

gkHxLk = g1HxL g2HxL2 g3HxL3 ... gnHxLn

where each gi is a squarefree polynomial and GCDHgi, gkL = 1

The squarefree part of a polynomial can be calculated without actually factoring the polynomial 
into irreducibles. We will see how to do this for fields of characteristic zero. 

Definition. A field F is of characteristic zero, if for all a Î F, a ¹ 0 and n Î Z, n ¹ 0  we have 
n a ¹ 0.

Lemma. Let F be a field of characteristic zero. Then f  is square-free  � GCDH f , f ¢L = 1.

Example. Consider

f = x6 + 2 x3 + 1

over Z3.

DH f L = 6 x5 + 6 x2 = 0 Hmod 3L
à Squarefree factorization algorithm

This is Musser's algorithm originall presented in

D. R. Musser, Algorithms for Polynomial Factorization, Ph.D. thesis, University of Wisconsin, 
1971.
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Take

f HxL = ä
k=1

n

gkHxLk

find derivative

f ¢HxL = â
k=1

n

g1HxL ... k gkHxLk-1 gk
¢HxL ... gnHxL

Hence

cHxL = GCDH f HxL, f ¢HxLL = ä
k=2

n

gkHxLk-1

Then

wHxL =
f HxL

GCDH f HxL, f ¢HxLL = ä
k=1

n

gkHxL
is a product of squarefree factors. Calculating (if cHxL is not 1, because otherwise f HxL is squarefree)

yHxL = GCDHcHxL, wHxLL = ä
k=2

n

gkHxL
and observing that

g1HxL =
wHxL
yHxL

or

g1HxL =

f HxL
cHxL

GCDJcHxL, f HxL
cHxL N

we find the first squarefree factor.

To find g2HxL, we observe that it is the first factor of cHxL. Thus

f HxL �cHxL
new_c HxL = GCDHcHxL, c¢HxLL = ä

k=3

n

gkHxLk-2 =
cHxL
yHxL

15-355: Modern Computer Algebra Symbolic Integration



wHxL =
cHxL

GCDHcHxL, c¢HxLL =
cHxL

new_c HxL =
cHxL
cHxL
yHxL

= yHxL
In short

cHxL =
cHxL
yHxL

wHxL = yHxL
yHxL = GCDHcHxL, wHxLL

g2HxL =
wHxL
yHxL

Applying these recursively, we find all gk

à Example.

f HxL = x9 + x8 - 2 x7 - 2 x6 + 2 x3 + 2 x2 - x - 1

f ¢HxL = 9 x8 + 8 x7 - 14 x6 - 12 x5 + 6 x2 + 4 x - 1

cHxL = GCDH f HxL, f ¢HxLL = x5 + x4 - 2 x3 - 2 x2 + x + 1

PolynomialGCDAx9 + x8 - 2 x7 - 2 x6 + 2 x3 + 2 x2 - x - 1,

9 x8 + 8 x7 - 14 x6 - 12 x5 + 6 x2 + 4 x - 1E

wHxL =
f HxL

GCDH f HxL, f ¢HxLL = x4 - 1

Entering the main loop: k = 1

yHxL = GCDHcHxL, wHxLL = x2 - 1

PolynomialGCDAx5 + x4 - 2 x3 - 2 x2 + x + 1, x4 - 1E

g1HxL =
wHxL
yHxL =

x4 - 1

x2 - 1
= x2 + 1
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wHxL � yHxL = x2 - 1

cHxL �
cHxL
yHxL = x3 + x2 - x - 1

Entering the main loop: k = 2

yHxL = GCDHcHxL, wHxLL = x2 - 1

g2HxL =
wHxL
yHxL = 1

wHxL � yHxL = x2 - 1

cHxL �
cHxL
yHxL = x + 1

Entering the main loop: k = 3

yHxL = GCDHcHxL, wHxLL = x + 1

g3HxL =
wHxL
yHxL = x - 1

wHxL � yHxL = x + 1

cHxL �
cHxL
yHxL = 1

Since cHxL = 1, we stop and return Ix2 + 1M * 1 * Hx - 1L3 * Hx + 1L4
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à Code

factorsquareFree@pol_, x_D :=

Module@8f, fpr, c, w, y, g, k<,

f = pol;

fpr = D@pol, xD;

c = PolynomialGCD@f, fprD;

w = PolynomialQuotient@f, c, xD;

out = k = 1;

While@c =!= 1,

y = PolynomialGCD@c, wD;

g = PolynomialQuotient@w, y, xD;

out *= g^k;

k++;

w = y;

c = PolynomialQuotient@c, y, xD;

D;

out *= w^k

D �; PolynomialQ@pol, xD
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Zp

If the polynomial is in Zp@xD, the situation is slightly more complex.

Compute

cHxL = GCDH f HxL, f ¢HxLL
There are choices

cHxL = 1 then f HxL is squrefree

cHxL ¹ 1 and cHxL ¹ f HxL then we continue with the algorithm...

cHxL ¹ 1 and cHxL = f HxL and this is what makes a difference! We must have f ¢HxL = 0. Therefore, 

f HxL contains exponents that are multiple of p. We can write f HxL = bHxLp and reduce problem to 

squarefree factorization of bHxL.
The algorithm was presented by Akritas in

A. G.. Akritas, Elements of computer algebra with applications, Wiley, NY, 1989.

à Exercise

Let pHxL = 112 x4 + 58 x3 - 31 x2 + 107 x - 66. What is the squarefree factorization modulo 3?

Compare

FactorSquareFreeA112 x4 + 58 x3 - 31 x2 + 107 x - 66E

-66 + 107 x - 31 x2
+ 58 x3

+ 112 x4

with

FactorSquareFreeA112 x4 + 58 x3 - 31 x2 + 107 x - 66, Modulus ® 3E

x H1 + xL2 H2 + xL

We proceed as in Musser's algorithm

f := 112 x^4 + 58 x^3 - 31 x^2 + 107 x - 66
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c = PolynomialGCD@f, D@f, xD, Modulus ® 3D
1 + x

wHxL =
f HxL
cHxL

w = PolynomialQuotient@f, c, x, Modulus ® 3D

2 x + x3

Entering the main loop: k = 1

yHxL = GCDHcHxL, wHxLL
y = PolynomialGCD@c, w, Modulus ® 3D
1 + x

g1HxL =
wHxL
yHxL

g1 = PolynomialQuotient@w, y, x, Modulus ® 3D

2 x + x2

wHxL � yHxL 
cHxL �

cHxL
yHxL

w = y; c =
c

y

Since cHxL = 1, stop and return  g1@xD w@xD2
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Yun's squar-free factorization in characteristic zero.

Yun presented a more efficient algorithm

D. Y. Yun, On square-free decomposition algorithms, Proceedings of the 1976 ACM Symposium on 

Symbolic and Algebraic Computation, (1976), pp. 26-25.

Take

f HxL = ä
k=1

n

gkHxLk

find derivative

f ¢HxL = â
k=1

n

g1HxL ... k gkHxLk-1 gk
¢HxL ... gnHxL

Hence

cHxL = GCDH f HxL, f ¢HxLL = ä
k=2

n

gkHxLk-1

Then

wHxL =
f HxL

GCDH f HxL, f ¢HxLL = ä
k=1

n

gkHxL
is a product of square-free factors. No difference so far with the previous algorithm. 

We compute yHxL in a different way

yHxL =
f ¢HxL
cHxL =

f ¢HxL
GCDH f HxL, f ¢HxLL

yHxL = g1
¢HxL ... gnHxL + 2 g1HxL g2

¢HxL ... gnHxL + ... + n g1HxL ... gn-1HxL gn
¢HxL

We must eliminate the first term! It contains g1
¢HxL.

Elimination can be done by means of w¢HxL:
yHxL - w¢HxL = g1HxL@g2

¢HxL ... gnHxL + Hn - 1L g2HxL ... gn
¢HxLD

Therefore, we find the first squarefree factor as

g1HxL = GCDHwHxL, yHxL - w¢HxLL
Note that g2

¢HxL ... gnHxL + Hn - 1L g2HxL ... gn
¢HxL is not divisible by wHxL, since each gi is a square-

free polynomial with GCDHgk , gk
¢L = 1.

To find g2HxL, we do the following
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Note that g2
¢HxL ... gnHxL + Hn - 1L g2HxL ... gn

¢HxL is not divisible by wHxL, since each gi is a square-

free polynomial with GCDHgk , gk
¢L = 1.

To find g2HxL, we do the following

new_w HxL =
wHxL
g1HxL

new_y HxL =
yHxL - w¢HxL

g1HxL
new_y HxL - new_w¢ HxL ...

and so on...
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à Code

YunFactorSquareFree@pol_, x_D :=

Module@8f, fpr, c, w, y, g, k, out<,

f = pol; fpr = D@pol, xD;

c = PolynomialGCD@f, fprD;

w = PolynomialQuotient@f, c, xD;

y = PolynomialQuotient@fpr, c, xD;

out = k = 1;

z = y - D@w, xD;

While@z =!= 0,

g = PolynomialGCD@w, zD;

out *= g^k;

k++;

w = PolynomialQuotient@w, g, xD;

y = PolynomialQuotient@z, g, xD;

z = y - D@w, xD;

D;

out *= w^k

D �; PolynomialQ@pol, xD

Hermite-Ostrogradsky's Algorithm
E. Hermite, Sur l'intégration des fractions rationelles, Nouvelles Annales de Mathématiques, 

11(1872), 145-148.

M. W. Ostrogradsky, De l'intégration des fractions rationelles, Bulletin de la Classe Physico-

Mathématiques de l'Académie Impériale des Sciences de St. Pétersburg, IV, 1845, 
pp.145-167, 286-300.

Given

à p

q
dx

where degH pL < degHqL and GCDH p, qL = 1. The idea of the algorithm is to find a, b Î F@xD such 

that 
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à p

q
dx = Rational_Function + à a

b
dx

where b is squarefree.  We will use another algorithm to compute Ù a

b
dx. 

We start with computing a squarefree factorization of q

q = q1 * q2
2 * ... qm

m

where m ³ 2 (otherwise, q is squarefree):

à p

q
= à p

q1 * q2
2 * ... qm

m

Hermite-Ostrogradsky's algorithm reduces exponents of each irreducible qk  to 1

à 1

q1 * q2
2 * ... qm

m
® à r1

q1 * q2
2 * ... qm

m-1
® ... ® à rk

q1 * q2 * ... qm

The algorithm proceeds as follows. Let

q = q1 * q2
2 * ... qm

m

v = qm

u =
q

vm
= q1 * q2

2 * ... qm-1
m-1

Since

GCDHu v¢, vL = GCDIq1 * q2
2 * ... qm-1

m-1 qm
¢, qmM = 1

using the extended Euclidean algorithm we find  a, b Î F@xD such that

p = u v¢ a + v b, degHaL £ degHvL - 1

See the proof below. Dividing both parts by  q = u * vm  gives

(1)
p

q
=

a v¢

vm
+

b

u vm-1

Next we observe that

a v¢

vm
=

1

1 - m
BK a

vm-1
O¢

-
a¢

vm-1
F

Thus, equation (1) can be rewritten as

p

q
=

1

1 - m
K a

vm-1
O¢

-
a¢

vm-1
+

b

u vm-1
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or

p

q
=

1

1 - m
K a

vm-1
O¢

+
1

1 - m
*

b H1 - mL - a¢ u

u vm-1

Integrating both sides, yields

à p

q
=

1

1 - m

a

vm-1
+

1

1 - m
à b H1 - mL - u a¢

u vm-1

The integrand is reduced to one with a smaller multiplicity. We repeat this process until the denomi-
nator is squarefree.

à Theorem

Let  a, b Î F@xD and GCDHa, bL = 1. Then for any given polynomial c Î F@xD there exist unique 

polynomials Σ and Τ Î F@xD such that

Σ * a + Τ * b = c,      degHΣ L £ degHbL - 1

Proof. 

From the extended Euclidean algorithm

s * a + t * b = 1 = gcdHa, bL
or

s * w * a + t * w * b = w

We need to lower the degree of s * w.

s * w = q * b + r      where     degHrL £ degHbL - 1  

and substituting it back to the previous equation

Hq * b + rL * a + t * w * b = w

Collecting terms by b,

r * a + Hq * a + t * wL * b = w

we obtain

Σ * a + Τ * b = c

where Τ =q * a + t * c and Σ = r.  Since

degHΣL = degHrL £ degHbL - 1

we complete the proof. QED.
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à Example 

á x3 + 3

2
x2

Ix3 + x + 1M2
dx

p = x3 +
3 x2

2
;

q = Ix3 + x + 1M2
;

v = x3 + x + 1; H* the last factor *L
m = 2;

u =
q

vm
;

We need to find such a and b that

u v¢ * a + v * b = r, degHaL < degHvL
Using PolynomialExtendedGCD we find p1 and p2, such that

u v¢ * p1 + v * p2 = 1

PolynomialExtendedGCD@u * D@v, xD, vD

:1, : 4

31
-

9 x

31
+

6 x2

31
,

27

31
-

18 x

31
>>

8p1, p2< = %@@2DD;

Multiply this 

u v¢ * p1 + v * p2 = 1

by p 

p * u v¢ * p1 + p * v * p2 = p

and then decreasing the order of p1 * p 

p * p1 = x * v + y
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PolynomialRemainder@p1 * p, v, xD

1

2
+

x

2

PolynomialQuotient@p1 * p, v, xD

-

1

2
+

6 x2

31

It follows

p1 * p =
6 x2

31
-

1

2
* v +

x

2
+

1

2

Substituting this into

p * u v¢ * p1 + p * v * p2 = p

and collecting terms wrt v, we get

H x

2
+

1

2
a

L * u * v¢ + H p2 * p +
6 x2

31
-

1

2
* u * v¢

§

b

L * v = p

where

a = PolynomialRemainder@p1 * p, v, xD

1

2
+

x

2

b = Expand@PolynomialQuotient@p1 * p, v, xD * u * D@v, xD +

p2 * pD

-

1

2

Thus, by Hermite-Ostrogradsky's algorithm
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à p

q
=

1

1 - m
*

a

vm-1
+

1

1 - m
* à b * H1 - mL - u * a¢

u * vm-1

we obtain

á x3 + 3

2
x2

Ix3 + x + 1M2
dx = -

x

2
+ 1

2

x3 + x + 1

since

b H1 - mL - u D@a, xD
u vm-1

0

and

a

H1 - mL vm-1

1

2
+

x

2

-1 - x - x3
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