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I Integer Relation Algorithms

"Computers are useless. They can only give you answers."
Pablo Picasso
"The purpose of computing is insight, not numbers."
Richard Humming

Given a vector of real number {x;, ..., x,}, find a vector of integers {p1, ..., pn}such that a linear

combination of given numbers is zero, namely
pi1xt + .. +puxn =0
The algorithm was discovered iun 1979 by Ferguson and Forcade [1].
In 1982 it was improved by Lenstra, Lenstra, Lovasz [2].
1992, more improvements by Ferguson and Bailey - PSLQ algorithm[3].
2D case:
Suppose there are two numbers x, y. Find integers n, m such that
xn+ym=0.

If x and b are integers, we use the Euclidean algorithm

X = yxq1 +ri, O<sr <y
y = rixqa +ra, 0<m<n
rn = rxq3 +rs, O0<r <nm
Tk—2 = Ti-1%qQk +Tk, 0=<rm < rm—1
Te-1 = Tkxqge +0

What if we apply this idea to real numbers?
GCD(V2, 1)
1.414214=1*1 +0.414214
1=2%0.414214 +0.171573
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0.414214=2*0.171573 +0.071068
0.171573 =2 * 0.071068 +0.029437
0.071068 =2 * 0.029437 +0.012193
and so on
Since remainders 7 — 0 on each iteration, we will get either an exact relation or an approximation.
This is a cornerstone idea of the lattice reduction algorithm.

Infinite continued fraction for v 2 :

1
V2 =1 +
2+ 1 T
2+
2+ 1
2+ 1
2+...
Lattice Reduction Algorithm (LLL algorithm)
Let B be a set of vectors B = {b1, b2, ..., by} in Q". If they are independent then they form a basis,

which means that any point can be written as a linear combination of b;

m
x=Zr,~b,~

k=0
here coefficients 7; are real numbers. Now instead of real »; we choose only integers
m
L= Zni b;, n;isaninteger, C Q"
=0
The set of such points forms a lattice L. This lattice has dimension » and rank m.

Suppose we have two vectors

What is the lattice formed by these vectors?

Now given a lattice, the basis B of course is not unique, and we may look for bases with some distin-
guished properties. We would like to reduce B to basis B', also describing L, where B' is a "good"

lattice basis in the sense of some reduction theory - the basis which has a shortest vector.

The Euclidean length of a vector V' = {v;, v2, .., v} is defined by
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m Example

Suppose we have two vectors

by ={1, 9}
by =1{4, 37}

The length of each vector is

V12+92 =9.05...
42 +37% =3721...

We can reduce the basis by the following transformations
by =bs -4 by;
b1 =b1-9 by;

bl={1, 9};b2= {4, 37};

b2 = b2 -4bl;

bl = bl - 9b2;
{bl, b2}

| {{1, 0}, {0, 1}}

The new basis is shorter comparing to the original - each length is just 1.

In Mathematica the basis reduction is done by LatticeReduce:

| LatticeReduce[{{1, 9}, {4, 37}}]
| {{0, 1}, {1, 0}}

The problem of finding the shortest vector is believed to be NP-complete [4].
However, an approximate solution algorithm [2] - known as the LLL, runs in polynomial time

Why would be we interested in a shortest vector? Consider the following basis vectors

1,0,0, .., 0, Cx1y
0,1,0, ..,0,Cx1y
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0,0,1, .., 0, Cxts

0,0,0, .., 1, Cx1y

where C is a constant (usually, huge) and 7; are rational approximations of the real numbers x;. Now
suppose we are able to reduce this basis to a "good" one, the basis which has a short Euclidian length.

Each vector w of the new basis will look like

n
w:{wl, W2, ..., W, C*Zwi Ti}
=1

If this is a shortest vector then

n
Cx Zwi 7, = 0
i=i

is small or maybe zero. This means that if we replace approximations 7; by real numbers

n
ZWI' X = 0
i=i

we get a new identity for x;, x2, ..., x,. For better understanding, let us consider a few examples
from [5, 6, 7].

m Example (finding minimal polynomials)
Given a real algebraic number a = 1.3027756377319946465596. Find the minimal polynomial for it.
If « is algebraic then there is such integer p that

L, @, o, ..o
{ }

has an integer relation. We start with the basis

B :={{1,0,0,0,0,c},
{0, 1, 0,0, 0, ca},
{o,0,1,0,0, ca?},
{o,0,0,1,0,ca’},
{o,0,0,0,1, ca’}};

where arbitrary constant c is chosen to be 10! - the bigger the better.
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a=1.3027756377319946465596;
c = 10~15;
B // MatrixForm

1000000000000000
1.3027756377319946465596 x 10%°
1.697224362268005353440 x 1013
2.211102550927978586238 x 1013
2.880570535876037474083 x 10%°

o O O O
O O O K O
o O B O O
O P O O O
R O O O O

Next, we reduce this basis

Round[N[B, 30]];
LatticeReduce [%] ;
N[%]

{{-3., 1., 1., 0., 0., -2.85695x107"},

{o., -3., 1., 1., 0., -7.60105x10°}, {0., 0., -3., 1., 1., 1.51839x107%},
{-581543., -1.68918x10°, -55447., -5.0121x10°,

4.84575%x10°, 4.9881x106}, {757 621., 2.20063x10°,

72240., 6.52964x10°, -6.31293x10°, 1.14865x10"}}

Among new vectors, we need to pick the shortest one
| %[[2]] - {1, x, x*2, x*3, x*4, 0}
| 0.-3.x+1.x?+1.x>+0. x*
Therefore, we conject that the minimal polynomial for number « is

X+x-3

m Example (trigonometry)

Using LLL algorithm, find unknown coefficients | and r;:

cot( %) + cot( 2?”) + cot( 3?”) ->r+nrn \/?

We start with the basis
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B := {{1, 0,0, cl}, {o, 1, 0, c«/?}, (0,0, 1, cV}};

B // MatrixForm
where V is a numeric approximation of
| V = N[Cot[Pi /8] + Cot[Pi/4] + Cot[3Pi/8], 40];
Next, we reduce this basis

Round[N[B, 30]];
LatticeReduce([%] // N

{{71., -2., 1., 4.76464><10’15},

{2.41811x107, -1.28713x107, -1.56155x10°%, 2.21048x107},
{-3.41972x107, 1.82028x 107, 2.20837x10°, 3.12609x10"}}

Among new vectors, we need to pick the shortest one, this is the first one in a list. This yields

Clear([V];
Rationalize[%%[[1]]] .{1, N2, v, o}

-1-2+v2 +V

“1 - 242 47 =0

m Example (integration)

o log?
f —\/; g () dx = 2n?
o (1-x)?
00 log3 4
f de = -3 7T2 + ﬂ-_
o (1-x)° 4
The question: what is
27?

0\ x 10g4(x)
——dx
o (1-x*
Looking at two previous results we guess that the integral is a linear combination of 7 in even powers:
71 +I’27T2+I’37T4 +I"47Z'6

where coefficients 7; are unknown. We find them using the LLL algorithm.
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Start with the basis

B := {{1,0,0,0,0,c1}, {0,1,0,0,0, cx®}, {0,0,1,0,0, cr'},
{o,0,0,1,0, cx®}, {0,0,0,0,1, cV}};
B // MatrixForm

1000000000000000
1000000000000 000 52
1000000000000 000 5t?
1000 000000000000 5®
1000000000000000V

O O O O
O O O K O
O O B O O
O O O O
P O O O O

where V is a numeric approximation for our integral:

Vx Log[x]*

V = NIntegrate [
(1-x)*

, {x, 0, 1, Infinity}, WorkingPrecision - 35]

7.00872059302328872985785310326956775

Reduce the basis

Round[N[B, 30]]:;
LatticeReduce([%] // N

{{o., 12., -1., 0., -3., -8.35394x 107!},

{2432., -2008., 3191., -239., -9085., 6553.88},
{-2689., -2621., -8150., 912., -7754., -6656.71},
{16891., 300., -772., 47., 1450., 3237.83},
{-2049., -701., 20817., -2029., -9722., -20206.8}}

Choosing the shortest vector, yields

Clear([V];
Rationalize[%%[[1]]] .{1, n*, =*, =%, V, 0}

1272 -4 -3V

V=4n? L
3

m Example (BBP formula for )

Let us ask whether 7 satisfy a relation of the form
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< an ar
,;1 k [8k+1 skr2 8k+7]

c = 10~15;
1 1

alk_] -Sum[— *« ———, {3, 0, Infinity}];
163 83 +k

B ={{1,0,0,0,0,0,0,0, ca[l]},

{0,1,0,0,0,0,0,0, cal2]},
{0, 0,1, 0, 0,0, 0,0, cal[3]},
{0, 0,0,1, 0,0, 0,0, caf4]},
{0, 0,0,0,1,0, 0,0, ca[5]},
{0, 0,0,0,0,1, 0,0, ca[6]},
{0, 0,0,0,0,0,1,0, cal[7]},
{0, 0,0,0,0,0,0,1, cPi}};

B = Round[N[B, 30]];

Apply LatticeReduce
LatticeReduce[B] // N

{{-4.,0.,0.,2.,1.,1.,0., 1., 2.62812x107'%},

{o., -8., -4., -4., 0., 0., 1., 2., -2.10281x107*¢},

{57., -15., -3., 17., 202., 12., -16., -30., -22.8166},
{71., -71., 18., 89., 59., 75., -116., -23., 7.07971},
{-17., 69., -51., -78., -83., 169., 8., 2., 1.89819},
{32., 3., -58., 79., -133., 122., 88., -13., -53.1872},
{-29., -20., 61., -26., -38., -29., -19., 13., -229.725},
{36., -86., 142., 41., 24., 55., 130., -27., 61.3267}}

The first two vectors suggests two identities

- 1[ 4 2 1 1 ]
168 L8k+1 8k+4 8k+5 8k+6

T =

& 4 4 1
2= + —
,Zl "[8k+2 8k+3 8k+4 8k+7]
The first formula is called the BBP-formula.

The significance of the BBP-formula is to compute far-out digits of 7 in the hexadecimal base. How

can we do this?

A simpler problem:
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given a rational number = wherea < b

compute a far-out digit (say 10” th) of its decimal expansion
Mod[a Mod[10", b], b]
b

Mod[a Mod[10”, b], b]
/I N

a=1233219; b = 876543; n = 5; -

N[a /b, 40]

1.406912153767698789449005924409869224898

| 0.215377

Back to 7. Suppose we want to compute digits starting at position d + 1. You will need to multiple the
above series by 167 and take the fractional part. Let us demonstrate this by choosing the first additive

term in the BBP formula

o 4 d o 4
frac| 164 — | = frac| 164 + frac| 164 —_—
[ ,;16"(8k+1)] [ ,;41 (8k+1)] [ kzzd_;I 1688 k+1)

In the first sum

d 1697* d 16dk(mod8k+1)
frac| 167 dl
rac( Zl6"(8k+l)) Z (8k+1] Z (mod 1)

k=0 k=0

1) we do exponentiation using the binary algorithm and reducing each intermediate product modulo
8k+1;

2) divide each numerator by correspondent 8 k£ + 1 using ordinary floating arithmetic;
3) sum terms discarding integer parts.

In the second sum

) 16d—k o0 16d—k
frac( Z ) = Z (mod 1)
k:d+18k+1 k:d+18k+1

we will need only a few terms, since they rapidly become smaller. Adding these two sums together

will yield a few digits of 7 starting at position d + 1. See [8] for proofs and some computational details

Concluding remarks

1) The lattice reduction algorithms do not find the shortest basis, but find a basis with the relatively
short vectors.
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2) LLL might run into numerical instability - you have to use "enough" digits.
3) The relation which you obtain is only a "possible" relation, it must be proved analytically!

4) The lattice reduction approach is very powerful and offers rich possibility for discovery!
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