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Buchberger's algorithm
Theorem. (Buchberger's S-pair criterion)

A finite set G = 8g1, ..., gs< for an ideal I  is a Gröbner basis if and only if 

SHgk , gnL �
*

G 0

(the remainder of division SHgk , gnL  by G is zero) for any k and n.

Buchberger's algorithm

Fix a monomial order. 

A Gröbner basis G for ideal I = < f1, ..., fs > is obtained by the following procedure:

1. for each i and j execute SI fi, f jM �
*

G ri j

2. if all remainders are zero, return f1, ..., fs

3. otherwise add ri j to basis G and goto step 1

This procedure gives us an ascending chain of ideals that must eventually stop growing because 
F@x1, ..., xnD  is Noetherian. This proves that algorithm terminates. 

Unfortunately, there is no bound on the running time.

Input: A polynomial set F = 8 f1, ..., fs< that generates an ideal I

Output: A Gröbner basis G = 8g1, ..., gr< that generates I .

G := F

M := set of pairs 8 fi, f j< where fi and f j are in G.

WHILE (M<>Ø) DO

{p, q} := a pair in M

M := M - {{p, q}}

S :=  SPolynomial(p,  q)

R := NormalForm(S, G)//reduce S wrt to G

IF (R <> 0) THEN

M := M U 8 fi, R< for all gi in G

G := G U 8R< 
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à Example 1

Consider the ideal < x2 - y, x3 - z > and build a Gröbner basis wrt to lex order x > y > z. 

We start with computing 

SIx2 - y, x3 - zM = x3

x2 * Ix2 - yM - x3

x3 * Ix3 - zM = - x y + z

Its leading term x y is not contained in < LMH f1L, LMH f2L > = < x2 >, therefore we must add it 

to the basis, which is now is

< x2 - y, x3 - z, - x y + z >

Now we compute

SIx2 - y, - x y + zM = x2 y

x2 * Ix2 - yM - x2 y

-x y
* H- x y + zL = x z - y2

We add it to the basis, which now is

< x2 - y, x3 - z, - x y + z, x z - y2 >

Keep computing

SH f2, f3L = z * f1

SH f1, f4L = y * f3

SH f2, f4L = Hx y + zL * f3

SH f3, f4L = y3 - z2

The last has leading term that is not in < x2, x y, x z >.Adding the new generator completes the 

Gröbner basis

< x2 - y, x3 - z, - x y + z, x z - y2, y3 - z2 >

You check this by computing S-polynomials.
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GroebnerBasisA9x2 - y, x3 - z=, 8x, y, z<,

MonomialOrder ® LexicographicE

9y3 - z2, -y2 + x z, x y - z, x2 - y=

à Example 2

Compute a Gröbner basis for  the ideal < x y3 - x2, x3 y2 - y > wrt to graded lex order x > y . 

SIx y3 - x2, x3 y2 - yM = x3 y3

x y3 * Ix y3 - x2M - x3 y3

x3 y2 * Ix3 y2 - yM = - x4 + y2

Its leading term x4 is not contained in < LMH f1L, LMH f2L >, therefore we must add it to the basis, 

which is now is

< x y3 - x2, x3 y2 - y, - x4 + y2 >

Now we compute

SIx3 y2 - y, - x4 + y2M = x4 y2

x3 y2 * Ix3 y2 - yM - x4 y2

-x4 * I- x4 + y2M = y4 - x y

It's leading term y4is not contained in < LMH f1L, LMH f2L, LMH f3L >,  therefore we must add it to 

the basis.

SIx y3 - x2, - x4 + y2M = x4 y3

x y3 * Ix y3 - x2M - x4 y3

-x4 * I- x4 + y2M = - x5 + y5

- x5 + y5 ®-x4+y2 = y5 - x y2 ®y4-x y = 0

The basis now is

< x y3 - x2, x3 y2 - y, - x4 + y2, y4 - x y >

Next we compute

SIx y3 - x2, y4 - x y M = x y4

x y3 * Ix y3 - x2M - x y4

y4 * Iy4 - x y M = 0

SI- x4 + y2, y4 - x y M = x4 y4

-x4 * I- x4 + y2M - x4 y4

y4 * Iy4 - x y M = - y6 + x5 y

- y6 + x5 y ®y4-x y = x5 y - x y3 ®-x4+y2 = 0
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GroebnerBasisA9x y3 - x2, x3 y2 - y=, 8x, y<,

MonomialOrder ® DegreeLexicographicE

9x y - y4, -x2 + x y3, -x4 + y2, -y + x3 y2=

à Timings

Clear@x, y, zD; polys = 9x6 + y4 + z3 - 1, x5 + y3 + z2 - 1=;

gb = Timing@GroebnerBasis@polys, 8y, z, x<DD;

8First@gbD, Length@gbP2TD<

80.063, 7<

gb = Timing@GroebnerBasis@polys, 8z, y, x<DD;

8First@gbD, Length@gb@@2DDD<

91.33357 ´ 10-17, 5=

gb = Timing@GroebnerBasis@polys, 8x, y, z<DD;

8First@gbD, Length@gb@@2DDD<

81.422, 11<

gb = Timing@GroebnerBasis@polys, 8y, z, x<,

MonomialOrder ® DegreeLexicographicDD;

8First@gbD, Length@gb@@2DDD<

91.661 ´ 10-16, 2=
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gb = Timing@GroebnerBasis@polys, 8x, y, z<,

MonomialOrder ® DegreeReverseLexicographicDD;

8First@gbD, Length@gb@@2DDD<

80., 3<

à Monomial orders

GroebnerBasis@8x + y + z, x - 2 y + z^3, x^2 - 2 y^3 + z<,

8x, y, z<D

Reverting the order of the variables gives now one univariate polynomial in x.

GroebnerBasis@8x + y + z, x - 2 y + z^3, x^2 - 2 y^3 + z<,

8z, y, x<D

Calculating a Gröbner basis is typically a very time consuming process for larger polynomial sys-

tems. In most cases the calculation using the term order MonomialOrder -> DegreeRe-

verseLexicographic is the fastest.

GroebnerBasis@8x^7 + y^5 + z^2, x - 2 y^3 + 5 z^3,

x^2 - 7 y^3 + z^4<, 8z, y, x<,

MonomialOrder -> LexicographicD; �� Timing

GroebnerBasis@8x^7 + y^5 + z^2, x - 2 y^3 + 5 z^3,

x^2 - 7 y^3 + z^4<, 8z, y, x<,

MonomialOrder -> DegreeReverseLexicographicD; �� Timing

The DegreeReverseLexicographic is not directly useful for equation solving. But it is very useful 
for detecting an inconsistent system of equations. 

For eliminating variables the term order MonomialOrder -> EliminationOrder is often the 
most appropriate one.

GroebnerBasis@8x - s t^2 + s, y - s^2 + t^2, z - s^3 + t<,

8z, y, x<, 8s, t<,

MonomialOrder -> EliminationOrderD

15-355: Modern Computer Algebra 5



à Coefficients Growth

In[4]:=
eqs = 92 x4 y + x3 y3 - x z2 + 1, x2 + y2 z3 - 1, x2 y - 7 y3 z2 + y2 z3=;

In[5]:=
gb = GroebnerBasis@eqs, 8x, y, z<D;

In[6]:=
Exponent@ð, 8x, y, z<D & �� gb

Out[6]= 880, 0, 44<, 80, 1, 43<, 81, 0, 43<<

In[7]:=
Max@Abs@Cases@gb, _Integer, 3DDD

Out[7]=
660 315 050 284 902 405 127 753 569 085 965 903 934 655 262 562 978 197 853 379 515 �

017 909 418 018 128 358 017 411 114 728 904 394 324 209 494 316 198 167 365 922 �

715 648 404 225 906 493 353 093 640 012 381 786 701 916 234 271 606 424 340 544 �

687 009 397 545 950 038 307 082 551 077 348 818 498 311 022 761 249 117 137 174 �

194 545 028

à Minimal Gröbner basis

Buchberger's algorithm does not guarantee that obtained basis will be unique. There are two places 
in the algorithm where we make choices: 

a) the order of polynomials in the basis

b) in the while loop: {p, q} := a pair in M  - we choose two polynomials at random.

Definition. A Gröbner basis is called minimal if all LCHgkL = 1 and for all i ¹ j LM HgiL does not 

divide LM Ig jM.
How to obtain a minimal basis? We must eliminate all gi for which there exists 

j ¹ i such that LMIg jM divides LMHgiL.The minimal basis is not unique as well.

Example. Consider a basis (lex order y > x). 

< y2 + y x + x2, y + x, y, x2, x >

which is not minimal.

We can remove the first, second and fourth polynomials to get < y, x >

We could also remove the first, third and fourth to get < y + x, x >

Definition. A Gröbner basis is called reduced if all LCHgkL = 1 and each gi is reduced with respect 

to G - 8gi<
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Definition. A Gröbner basis is called reduced if all LCHgkL = 1 and each gi is reduced with respect 

to G - 8gi<
Lemma. Let G = 8g1, ..., gs< be a minimal Gröbner basis. Consider the following reduction process

g1 ®H1 h1 , where H1 = 8g2, ..., gs<
g2 ®H2 h2 , where H2 = 8h1, g3, ..., gs<

g3 ®H3 h3 , where H3 = 8h1, h2, g4, ..., gs<
and so on

gs ®Hs hs , where Hs = 8h1, h2, ..., hs-1<
Then H = 8h1, h2, ..., hs< is a reduced Gröbner basis

Theorem (Buchberger) Fix a monomial order. Then every non-zero ideal has a unique reduced 

Gröbner basis

Example.Consider a basis < y2 + y x + x2, y + x, y, x2, x > We constructed two minimal bases 

< y, x >  and  < y + x, x >. The last one is not reduced, we can reduce y + x  to y using x.

Buchberger's Refined Algorithm

Here we will discuss some improvements on the Buchberger algorithm. The most expensive opera-
tion in the algorithm is  the reduction of the S-polynomials modulo G. Buchberger developed two 
criterias for detecting 0-reductions a priori. He also developed other strategies that significantly 
speed up the calculations.

Buchberger's First Criteria.

If 

 LCMHLMH pL, LMHqLL = LMH pL * LMHqL
then 

SH p, qL �
*

G 0 

This means that we can ignore those pairs whose leading monomials are relatively prime. 

Buchberger's Second Criteria.

If, when considering the pair { fi, f j}, there exist an element fk  such that 

LCM(LM( fi), LM( f j)) is a multiple of LM( fk) 

and S( fi, fk) and S( f j, fk) have already been computed
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then 

SI fi, f jM �
*

G 0 

Another strategy.

Always select pairs { fi, f j} such that LCMILMH fiL, LMI f jMM is as small as possible.

à Example: Buchberger's Refined Algorithm

Consider the ideal < x2 + 2 x y, x y + 2 y2 - 1 > and compute its Gröbner basis wrt to lex order 

x > y. 

SIx2 + 2 x y, x y + 2 y2 - 1M = x2 y

x2 * Ix2 + 2 x yM - x2 y

x y
* Ix y + 2 y2 - 1M = x

Adjust the basis:

< x2 + 2 x y, x y + 2 y2 - 1, x >

Look at LCMs:

LCMHLMH f1L, LMH f3LL = LCMIx2, xM = x2

LCMHLMH f2L, LMH f3LL = LCMHx y, xL = x y

and choose 8 f2, f3<.
SH f2, f3L = x y

x y
* Ix y + 2 y2 - 1M - x y

x
* HxL = 2 y2 - 1

Adjust the basis:

< x2 + 2 x y, x y + 2 y2 - 1, x, 2 y2 - 1 >

Look at LCMs:

LCMHLMH f1L, LMH f3LL = LCMIx2, xM = x2

LCMHLMH f1L, LMH f4LL = LCMIx2, y2M = x2 y2

LCMHLMH f2L, LMH f4LL = LCMIx y, y2M = x y2

LCMHLMH f3L, LMH f4LL = LCMIx, y2M = x y2

We can choose 8 f2, f4< or 8 f3, f4< - the lowest in x. 

We skip the last one, since the first criteria

SH f2, f4L = x y2

x y
* Ix y + 2 y2 - 1M - x y2

2 y2 * I2 y2 - 1M = x

2
+ 2 y3 - y
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x

2
+ 2 y3 - y ®x = 2 y3 - y ®2 y2-1 = 0

Two pairs left 8 f1, f3< and 8 f1, f4< - the lowest in x. We skip 8 f1, f4<, since the first criteria

SH f1, f3L = x2

x2 * Ix2 + 2 x yM - x2

x
* HxL = 2 x y

2 x y ®x = 0

Therefore, here is the basis

< x2 + 2 x y, x y + 2 y2 - 1, x, 2 y2 - 1 >

We can cancel first two polynomials, since they are reduced wrt f3. Hence

< x, y2 -
1

2
>

Hilbert's Nullstellensatz

 If the ideal is X1\ then the polynomials have no common zeros.

Gröbner bases are very useful for solving systems of polynomial equations. Let F be a finite set of 
polynomials in KHx1, ..., xnL. The variety of F is a set of all common complex zeros:

V HFL = 8Hz1, ..., znL fkHz1, ..., znL = 0 for all fk Î F<
The variety does not change if we replace F by another set of polynomials that generates the same 
ideal, in particular, by the reduced Gröbner basis. The advantage of G is that it reveals geometric 
properties of the variety that are not visible from F. What is the size of the variety? Hilbert’ s Null-
stellensatz implies

The variety V(F) is empty if and only if G = X1\ 

Example.

x + y2 = 0

- x + y + 1 = 0

y3 - y = 0
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GroebnerBasisA9x + y2 � 0, -x + y + 1 � 0, y3 - y � 0=,

8x, y<E

81<

SolveA9x + y2 � 0, -x + y + 1 � 0, y3 - y � 0=, 8x, y<E

8<

To count the number of zeros of a given system of equations we need to define  a standard 
monomial.

Definition. Given a fixed ideal I Í KHx1, ..., xnL and a monomial order, then a monomial 
xΑ = x1

Α1 ...xn
Αn  is called standard if it is not in the leading ideal XLTHIL\.

Example. Consider XLT HIL\ = < x1
5 x2

4 x3
2 >, then there are sixty standard monomials.

The variety V HIL is finite if and only if the set of standard monomials is finite, In a univariate case 
this is the Fundamental Theorem of Algebra, which states that the variety of a univariate polyno-
mial of degree n consists of n complex numbers.
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