Gröbner Bases

Victor Adamchik

Carnegie Mellon University

The main idea

Given a system of polynomial equations

 $\begin{cases} f_1 = 0 \\ \dots \\ f_s = 0 \end{cases}$

It forms an ideal $I = \langle f_1, ..., f_s \rangle$ for which we cannot solve a membership problem

It's better to choose a monomial ideal

But how would you build a monomial ideal out of a given set of polynomials?

Monomial Ideal

Understanding the structure

Definition: A monomial ideal $I \subset R$ is an ideal generated by monomials in R. For example,

$$I = \langle x^2 y^5, x^4 y^3, x^5 y \rangle$$

Such an ideal *I* consists of all polynomials which are finite sums of $\sum q_{\alpha} x^{\alpha}$, where $q_k \in R$. We will write $I = \{x^{\alpha}, \alpha \in A \subset \mathbb{Z}_{\geq 0}^n\}$

Example. Given

$$I = \langle x^2, x y^3, y^4 z, x y z \rangle$$

Then

$$f = 3 x^7 + 7 x y^3 z + 2 y^4 z + x y^2 z^2 \text{ is in } I,$$

since

$$x^7 = \left(x^2\right)\left(x^5\right)$$

$$x y^{3} z = (x y^{3})(z)$$

 $x y^{2} z^{2} = (x y z) (y z)$

Exercise. Given

 $I = \langle x^3, x^2 y \rangle$

Verify

$$f_1 = 3 x^4 + 5 x^2 y^3$$
 is it in *I*?
 $f_2 = 2 x^4 y + 7 x^2$ is it in *I*?

Lemma. Let $I = \langle x^{\alpha} | \alpha \in A \rangle$ and let x^{β} be a monomial in R. Then $x^{\beta} \in I \iff x^{\alpha} | x^{\beta}$ for some $\alpha \in A$.

Proof.

 \Leftarrow) is clear.

 \implies) Let $x^{\beta} \in I$, we can write $x^{\beta} = \sum q_k x^{\alpha_k}$, where $q_k \in R$. Each monomial in the sum is divisible by some x^{α} , and thus x^{β} is divisible by some x^{α} .

Consider $I = \langle x^2 y^5, x^4 y^3, x^5 y \rangle$. Here is a picture of all monomials in *I*.

Lemma.

Let I be a monomial ideal in R and let $f \in R$. Then the following are equivalent

 $1. f \in I$

2. every monomial of f is in I

3. *f* is a linear combination of monomials in *I*.

This lemma will allow us to solve the membership ideal problem:

a given polynomial is in the monomial ideal \iff if the remainder of f on

division by generators is zero.

■ Size of a monomial ideal

Lemma (*Emmy Noether*) (1882-1935)

Let R be a ring. The the following are equivalent

1. every ideal $I_k \subset R$ *is finitely generated*

2. every ascending sequence of ideals

 $I_0 \subset I_1 \subset \dots$

terminates, i.e. $I_n = I_{n+1}$ for sufficiently large n.

Then we say that the ring R is Noetherian.

The Noetherian-ness of polynomial rings allows us to prove that any infinite set of polynomial equations can be replaced with a finite set with the same solutions.

Proof.

 $1 \Longrightarrow 2$) Every ideal is finitely generated

$$I_1 = \langle f_1, ..., f_{p_1} \rangle$$
$$I_2 = \langle f_1, ..., f_{p_1}, ..., f_{p_1+p_2} \rangle$$

Take their union

$$I_{\infty} = \langle f_1, f_2, \dots \rangle$$

which is also finitely generated. Thus we may assume that the generators are taken from the ideals $I_{n_1}, ..., I_{n_r}$. If $N = \max(n_1 ..., n_r)$ then $I_{\infty} = I_N$.

 $2 \Longrightarrow 1$) Suppose every ascending sequence terminates.

Let *I* be an ideal $I = \langle f_{\alpha} \rangle$ that is not generated by a finite number of α .

Then we can construct an infinite sequence such that

 $I_r = \langle f_{\alpha_1}, ..., f_{\alpha_r} \rangle \notin I_{r+1} \langle f_{\alpha_1}, ..., f_{\alpha_{r+1}} \rangle$

for every r that violates the ascending chain condition.

Lemma (Dickson, 1913)

Every monomial ideal $J \subset F[x_1, ..., x_n]$ is generated by a finite number of monomials.

The statement looks suspicious... Let $R = Q\{x, y\}$, and consider $\langle x^2, x^2 y, x^2 y^2, \dots \rangle$. The catch: we must elimininate redundant generators

$$\langle x^2, x^2 y, x^2 y^2, ... \rangle = \langle x^2 \rangle$$

Proof. By induction on the number of variables.

If n = 1, then let $\beta = \min \{ \alpha \mid x^{\alpha} \in A \}$.

Inductive step. The result is valid for $F[x_1, ..., x_{n-1}]$. We need to deduce it for $F[x_1, ..., x_{n-1}, y]$. Let $J \subset F[x_1, ..., x_{n-1}, y]$ be a monomial ideal with *n* variables. We write a monomial in $F[x_1, ..., x_{n-1}, y]$ as $x^{\alpha} y^{m}$. Consider the following set of monomial ideals

$$J_m \subset F[x_1, ..., x_{n-1}]$$
$$J_m = \{x^{\alpha} \in F[x_1, ..., x_{n-1}] \mid x^{\alpha} y^m \in J\}$$

satisfying the ascending sequence

$$J_0 \subset J_1 \subset \dots$$

Each J_k is finitely generated. This sequence terminates by the Noether theorem. Then the ideal J is a set of all monomials from the sequence.

Ideal of leading terms

Fix a monomial order and $I \subset R$ is an ideal. We define LT(I) as a set of the leading terms of the elements of the ideal I (with respect to a given monomial order).

$$LT(I) = \{LT(f) : f \in I\}.$$

The *leading term ideal* of *I*, denoted by $\langle LT(I) \rangle$ is the ideal generated by LT(I). Observe, that is unpractical to build $\langle LT(I) \rangle$, since we will have to consider all polynomials in the ideal and take their leading terms. We would rather take the ideal of leading terms of generators

$$<$$
 LT(f_1), ..., LT(f_s) >

There are two ideals are NOT necessarily equal.

Example. Consider
$$I = \langle f_1, f_2 \rangle = \langle x^2 + 2xy^2, xy + 2y^3 - 1 \rangle$$
. We can show that

$$x \in \langle f_1, f_2 \rangle$$
, since $y * f_1 - x * f_2 = x$

Moreover, $LT(x) = x \in \langle LT(I) \rangle$. Now, we consider the ideal of leading terms of generators

$$< LT(f_1), LT(f_2) > = < x^2, x y >$$

It follows that $x \notin \langle LT(f_1), LT(f_2) \rangle$.

The main question: is it possible to find such a set of generators that

$$\langle LT(I) \rangle = \langle LT(f_1), ... LT(f_s) \rangle$$

Theorem. (*Hilbert Basis Theorem*)

Every ideal I in R is finitely generated. More precisely, there exists a finite subset $G = \{g_1, ..., g_s\} \subset I$ such that $I = \{g_1, ..., g_s\}$ with a property

 $< LT(I) >= < LT(g_1), ..., LT(g_s) >$

The Hilbert theorem tells us that any ideal (monomial or otherwise) is finitely generated. One CAN find such subset $G = \{g_1, ..., g_s\}$ of generators! The basis $\{g_1, ..., g_s\}$ that have a property $< LT(I) >= < LT(g_1), ... LT(g_s) >$ is quite special!!

Gröbner Basis

Definition: Fix a monomial order and let *I* be an ideal. A finite subset $G = \{g_1, ..., g_r\} \subset I$ is said to be a *Gröbner basis* if

$$< LT(I) >= < LT(g_1), ..., LT(g_s) >$$

This means that a subset $G = \{g_1, ..., g_r\} \subset I$ of an ideal *I* is a Gröbner basis if and only if the leading term of any element of *I* is divisible by one of the $LT(g_k)$.

Example. Fix *lex* order and consider

$$I = \langle f_1, f_2 \rangle = \langle x^3 - 2xy, x^2y - 2y^2 - x \rangle$$

 $< f_1, f_2 >$ is not a Gröbner basis. To prove this we first show that

$$x^2 \in \langle LT(I) \rangle$$

Indeed,

$$x^2 = y f_1 - x f_2 \Longrightarrow x^2 \in I \Longrightarrow x^2 = LT(x^2) \in (LT(I))$$

However,

since x^2 is not divisible by x^3 and x^2 y.

We will show that divison with remainder by a Gröbner basis is a valid ideal membership test.

Theorem. Let G be a Gröbner basis for an ideal $I \subset R$. Then $f \in I \iff$ the remainder r on division of f by G is zero. In other words,

$$f \in I \iff f \xrightarrow{*}_G 0$$

Proof.

 \implies) Let f be an arbitrary polynomial in I, then division yields

 $f = e_1 g_1 + \ldots + e_s g_s + r$

Thus, $f - r \in I$, it follows that $r \in I$. Assume that $r \neq 0$. Then there exists k such that $LT(g_k)$ divides LT(r), since G is a Gröbner basis. This is a contradiction to the fact that r is reduced wrt to G. Thus, r = 0.

Corollary. If $G = \{g_1, ..., g_s\}$ is a Gröbner basis for the ideal I, then $I = \langle g_1, ..., g_s \rangle$.

Proof.

Clearly $G = \{g_1, ..., g_s\} \subseteq I$, since each $g_k \in I$.

To prove $I \subseteq G$, choose any $f \in I$. By the above theorem f is reducible by G with a zero remainder. Thus, $I \subseteq G$.

Using the idea of Gröbner bases, we can easily solve a membership problem.

Algorithm

First we compute a Gröbner basis G of I.

Then we divide f by G and get the remainder r.

If r = 0 then f lies in I, otherwise it does not.

The Hilbert theorem states that a Gröbner basis exists, though it does not address a way of how to construct it.

How do we compute a Gröbner basis?

We will give an alternate characterization of Gröbner bases which shows us a practical way to construct them. To do this, we need to introduce the notion of *S-polynomial*.

S-polynomials

Recalle the definition of a Gröbner basis.

A subset $G = \{g_1, ..., g_r\} \subset I$ of an ideal I is a Gröbner basis if and only if the leading term of any element of I is divisible by one of the LT(g_k).

It might happen that a polynomial f has a leading power that is divisible by two (or more) $LT(g_k)$ and $LT(g_n)$, where $k \neq n$. If we reduce f using g_k we get a polynomial h_1

$$h_1 = f - \frac{P}{\mathrm{LT}(g_k)} g_k$$

and

$$h_2 = f - \frac{P}{\mathrm{LT}(g_n)} g_n$$

We introduced an ambiguity! But what if we consider $h_2 - h_1$??

$$h_2 - h_1 = \frac{P}{\operatorname{LT}(g_k)} g_k - \frac{P}{\operatorname{LT}(g_n)} g_n$$

This is a so-called S-polynomial. The S-polynomial is constructed in such a way that leading terms of two polynomials cancel each other.

Definition. Let f and g be two polynomials in R. The S-polynomial of f and g is the following combination

$$S(f, g) = \frac{p}{\mathrm{LT}(f)} * f - \frac{p}{\mathrm{LT}(g)} * g$$

where *p* is the least common multiple

$$p = \text{LCM}(\text{LM}(f), \text{LM}(g))$$

Example. Compute S(f, g) where $f = x^2 y + 2x y^2$, $g = 3 y^2 + 2$.

 $S(f, g) = \frac{x^2 y^2}{x^2 y} * f - \frac{x^2 y^2}{3 y^2} * g = y * f - \frac{x^2}{3} * g = -\frac{2}{3} x^2 + 2x y^3$

The following theorem gives an alternate characterization of Gröbner bases.

Theorem. (Buchberger's S-pair criterion)

A finite set $G = \{g_1, ..., g_s\}$ for an ideal I is a Gröbner basis if and only if

$$S(g_k, g_n) \xrightarrow{\tau}_G 0$$

(the remainder of division $S(g_k, g_n)$ by G is zero) for any k and n.

This theorem suggests how we can transform an arbitrary ideal basis into a Gröbner basis. Given a finite set *G* in $F[x_1, ..., x_n]$, we can immediately test *G* by checking the remainder.

Example. We will prove that $I = \langle y - x^2, z - x^3 \rangle$ is a Gröbner basis for *lex* order y > z > xConsider the S-polynomial

$$S = \frac{yz}{y} (y - x^2) - \frac{yz}{z} (z - x^3) = yx^3 - zx^2$$

This polynomial must be divisible by the basis

$$y x^{3} - z x^{2} = x^{3} (y - x^{2}) - x^{2} (z - x^{3}) + 0$$

Exercise. Change the lex order to x > y > z and verify that that the above basis is NOT a Gröbner

basis.

GroebnerBasis[{y-x², z-x³}, {x, y, z}, MonomialOrder
$$\rightarrow$$
 Lexicographic
{y³ - z², -y² + x z, x y - z, x² - y}

Example. Let $f_1 = x y - x$ and $f_2 = x^2 - y$ with the *grlex* ordering and x > y. Build a Gröbner basis. 1. We compute a *S*-polynomial of f_1 and f_2

$$S(f_1, f_2) = \frac{x^2 y}{x y} f_1 - \frac{x^2 y}{x^2} f_2 = x f_1 - y f_2 = -x^2 + y^2$$

2. Then we reduce this polynomial wrt our basis $\langle f_1, f_2 \rangle$

$$-x^2 + y^2 \rightarrow_{f_2} = y^2 - y$$

3. Since y^2 is not divisible by ant $LT(f_k)$, we add $f_3 = y^2 - y$ to the basis, which is now is $G = \langle f_1, f_2, f_3 \rangle = \langle x y - x, x^2 - y, y^2 - y \rangle$.

4. Repeat the first step.

Compute S-polynomials and reduce them over basis G

$$S(f_1, f_2) \longrightarrow_G 0$$

$$S(f_1, f_3) = \frac{x y^2}{x y} f_1 - \frac{x y^2}{y^2} f_3 = y f_1 - x f_3 = 0$$

$$S(f_2, f_3) = \frac{x^2 y^2}{x^2} f_2 - \frac{x^2 y^2}{y^2} f_3 = y^2 f_2 - x^2 f_3 = x^2 y - y^3$$

$$x^2 y - y^3 = q * f_2 + h = q(x^2 - y) + h = y(x^2 - y) + h$$

$$x^2 y - y^3 \longrightarrow_{f_2} - y^3 + y^2$$

$$-y^3 + y^2 = q * f_3 + h = q(y^2 - y) + h = -y(y^2 - y) + h$$

$$-y^3 + y^2 \longrightarrow_{f_3} 0$$

Thus, $< f_1, f_2, f_3 >$ is a Gröbner basis

GroebnerBasis[{xy-x, x² - y}, {x, y},
MonomialOrder
$$\rightarrow$$
 DegreeLexicographic]
 $\left\{-y + y^2, -x + xy, x^2 - y\right\}$

References

[1] D. Cox, J. Little, and D. O'Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.* Springer-Verlag, 1991.