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à The main idea

Given a system of polynomial equations

f1 = 0

...

fs = 0

It forms an ideal I = < f1, ..., fs >   for which we cannot solve a membership problem

It's better to choose a monomial ideal 

But how would you build a monomial ideal out of a given set of polynomials?

Monomial Ideal

à Understanding the structure

Definition: A monomial ideal I Ì R is an ideal generated by monomials in R. For example,

I = < x2 y5, x4 y3, x5 y >

Such an ideal I  consists of all polynomials which are finite sums of ÚqΑ xΑ, where qk Î R. We will 

write I = 8xΑ, Α Î A Ì Z³0
n <

Example. Given

I = < x2, x y3, y4 z, x y z >

Then

f = 3 x7 + 7 x y3 z + 2 y4 z + x y2 z2  is in I ,  

since

x7 = Ix2M Ix5M
x y3 z = Ix y3M HzL

x y2 z2 = Hx y zL H y zL
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x7 = Ix2M Ix5M
x y3 z = Ix y3M HzL

x y2 z2 = Hx y zL H y zL
Exercise. Given

I = < x3, x2 y >

Verify

 f1 = 3 x4 + 5 x2 y3    is it in I?

 f2 = 2 x4 y + 7 x2       is it in I?

Lemma.  Let I = < xΑ Α Î A >  and let x Β   be a monomial in R. Then x Β Î I  � xΑ x Β  for 

some ΑÎA.

Proof. 

�) is clear.

�) Let xΒ Î I , we can write xΒ = Úqk xΑk , where qk Î R. Each monomial in the sum is divisible 

by some xΑ, and thus xΒ is divisible by some xΑ.à

Consider I = < x2 y5, x4 y3, x5 y >.Here is a picture of all monomials in I .
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Lemma. 

Let I  be a monomial ideal in R and let f Î R. Then the following are equivalent

1. f Î I

2. every monomial of f  is in I

3. f  is a linear combination of monomials in I .

This lemma will allow us to solve the membership ideal problem:

a given polynomial is in the monomial ideal � if the remainder of f  on 

division by generators is zero.
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a given polynomial is in the monomial ideal � if the remainder of f  on 

division by generators is zero.

à Size of a monomial ideal

Lemma (Emmy Noether) (1882-1935)

Let R be a ring. The the following are equivalent

1. every ideal Ik Ì R is finitely generated

2. every ascending sequence of ideals

I0 Ì I1 Ì ...

terminates, i.e. In = In+1 for sufficiently large n.

Then we say that the ring R is Noetherian.

The Noetherian-ness of polynomial rings allows us to prove that any infinite set of polynomial 
equations can be replaced with a finite set with the same solutions.

Proof.

1�2) Every ideal is finitely generated

I1 = < f1, ..., fp1 >

I2 = < f1, ..., fp1 , ..., fp1+ p2 >

Take their union

I¥ = < f1, f2, ... > 

which is also finitely generated. Thus we may assume that the generators are taken from the ideals 
In1 , ..., Inr . If N = maxHn1 ..., nrL then I¥ = IN .

2�1) Suppose every ascending sequence terminates.

Let I  be an ideal I = < fΑ > that is not generated by a finite number of Α. 

Then we can construct an infinite sequence such that

Ir = < fΑ1 , ..., fΑr > Ë Ir+1 < fΑ1 , ..., fΑr+1 >

for every r that violates the ascending chain condition.à

Lemma (Dickson, 1913) 

Every monomial ideal J Ì F@x1, ..., xnD is generated by a finite number of monomials.

The statement looks suspicious...  Let R = Q 8x, yD,  and consider < x2, x2 y, x2 y2, ... >. The 

catch: we must elimininate redundant generators
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< x2, x2 y, x2 y2, ... > = < x2 >

Proof.  By induction on the number of variables. 

If n = 1, then let Β = min 8Α xΑ Î A<. 
Inductive step. The result is valid for F@x1, ..., xn-1D. We need to deduce it for F@x1, ..., xn-1, yD. 
Let J Ì F@x1, ..., xn-1, yD be a monomial ideal with n variables. We write a monomial in 

F@x1, ..., xn-1, yD as xΑ ym.  Consider the following set of monomial ideals

 Jm Ì F@x1, ..., xn-1D
Jm = 8xΑ Î F@x1, ..., xn-1D xΑ ym Î J <

satisfying the ascending sequence

J0 Ì J1 Ì ...

Each Jk  is finitely generated.  This sequence terminates by the Noether theorem. Then the ideal J  is 
a set of all monomials from the sequence. à

à Ideal of leading terms

Fix a monomial order and I Ì R is an ideal. We define LTHIL as a set of the leading terms of the 

elements of the ideal  I  (with respect to a given monomial order).

LT(I) = {LT(f) : f Î I}. 

The leading term ideal of I , denoted by < LTHIL > is the ideal generated by LTHIL. Observe, that is 
unpractical to build < LT(I) >, since we will have to consider all polynomials in the ideal and take 
their leading terms. We would rather take the ideal of leading terms of generators

< LTH f1L, ..., LTH fsL > 

There are two ideals are NOT necessarily equal.

Example. Consider I = < f1, f2 > = < x2 + 2 x y2, x y + 2 y3 - 1 >. We can show that

x Î < f1, f2 >, since  y * f1 - x * f2 � x

Moreover,    LTHxL = x Î < LTHIL >. Now, we consider the ideal of leading terms of 
generators

< LTH f1L, LTH f2L > = < x2, x y >

It follows that    x Ï < LTH f1L, LTH f2L >. 

The main question: is it possible to find such a set of generators that 

4 Groebner Bases



< LTHIL >= < LTH f1L, ... LTH fsL > 

Theorem. (Hilbert Basis Theorem) 

Every ideal I  in R is finitely generated. More precisely, there exists a finite subset 

G = 8g1, ..., gs< Ì I  such that  I = 8g1, ..., gs< with a property 

< LTHIL >= < LTHg1L, ..., LTHgsL >

The Hilbert theorem tells us that any ideal (monomial or otherwise) is finitely generated. One CAN 
find such subset G = 8g1, ..., gs< of generators! The basis 8g1, ..., gs< that have a property 

< LTHIL >= < LTHg1L, ... LTHgsL > is quite special!!

Gröbner Basis
Definition: Fix a monomial order and let I  be an ideal. A finite subset G = 8g1, ..., gr< Ì I  is said 

to be a Gröbner basis if

< LTHIL >= < LTHg1L, ..., LTHgsL >

This means that a subset G = 8g1, ..., gr< Ì I  of an ideal I  is a Gröbner basis if and only if the 

leading term of any element of I  is divisible by one of the LTHgkL.
Example. Fix lex order and consider

 I = < f1, f2 > = < x3 - 2 x y, x2 y - 2 y2 - x >

< f1, f2 > is not a Gröbner basis. To prove this we first show that

 x2 Î < LTHIL >

Indeed,

 x2 = y f1 - x f2 � x2Î I � x2 = LTIx2M Î < LT(I) >

However, 

 x2 Ï < LTH f1L, LTH f2L > = < x3, x2 y >

since x2 is not divisible by x3 and x2 y.

We will show that divison with remainder by a Gröbner basis is a valid ideal membership test.

Theorem. Let G be a Gröbner basis for an ideal I Ì R. Then f Î I  � the remainder r on 

division of f   by G is zero.  In other words,
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f Î I � f �
*

G 0

Proof. 

�) Let f be an arbitrary polynomial in I , then division yields  

f = e1 g1 + ... + es gs + r  

Thus, f - r Î I ,  it follows that  r Î I . Assume that r ¹0. Then there exists k such that LTHgkL 
divides LTHrL, since G is a Gröbner basis. This is a contradiction to the fact that r is reduced wrt to 
G. Thus, r = 0.à

Corollary. If G = 8g1, ..., gs< is a Gröbner basis for the ideal I , then I = < g1, ..., gs > .

Proof. 

Clearly G = 8g1, ..., gs< Í I , since each gk Î I .

To prove I Í G, choose any f Î I . By the above theorem f  is reducible by G with a zero remain-

der. Thus, I Í G.à

Using the idea of Gröbner bases, we can easily solve a membership problem.

Algorithm

First we compute a Gröbner basis G of I . 

Then we divide f  by G and get the remainder r. 

If r = 0 then f  lies in I , otherwise it does not.

The Hilbert theorem states that a Gröbner basis exists, though it does not address a way of how to 
construct it.

How do we compute a Gröbner basis?

We will give an alternate characterization of Gröbner bases which shows us a practical way to 
construct them. To do this, we need to introduce the notion of S-polynomial.

à S-polynomials

Recalle the definition of a Gröbner basis.

A subset G = 8g1, ..., gr< Ì I  of an ideal I  is a Gröbner basis if and only if the leading 

term of any element of I  is divisible by one of the LTHgkL.
It might happen that a polynomial f  has a leading power that is divisible by two (or more) LTHgkL 
and LTHgnL, where k ¹ n.  If we reduce f  using gk  we get a polynomial h1
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h1 = f - P

LTHgkL gk

and

h2 = f - P

LTHgnL gn

We introduced an ambiguity! But what if we consider h2 - h1 ??

h2 - h1 = P

LTHgkL gk - P

LTHgnL gn   

This is a so-called S-polynomial. The S-polynomial is constructed in such a way that leading terms 
of two polynomials cancel each other.

Definition. Let f  and g be two polynomials in R. The S-polynomial of f  and g is the following 

combination

SH f , gL = p

LTH f L * f - p

LTHgL * g

where p is the least common multiple

p = LCMH LMH f L, LMHgL L.
Example. Compute SH f , gL where f = x2 y + 2 x y2,  g = 3 y2 + 2.

SH f , gL = x2 y2

x2 y
* f - x2 y2

3 y2 * g = y * f - x2

3
* g = - 2

3
x2 + 2 x y3

The following theorem gives an alternate characterization of Gröbner bases.

Theorem. (Buchberger's S-pair criterion)

A finite set G = 8g1, ..., gs< for an ideal I  is a Gröbner basis if and only if 

SHgk , gnL �
*

G 0

(the remainder of division SHgk , gnL  by G is zero) for any k and n.

This theorem suggests how we can transform an arbritary ideal basis into a Gröbner basis. 
Given a finite set G in F@x1, ..., xnD, we can immediately test G by checking the remainder. 

Example. We will prove that I = < y - x2, z - x3 > is a Gröbner basis for lex order y > z > x

Consider the S-polynomial

S = y z

y
Iy - x2M - y z

z
Iz - x3M = y x3 - z x2

This polynomial must be divisible by the basis

y x3 - z x2 = x 3 Iy - x2M - x2 Iz - x3M + 0

Exercise. Change the lex order to x > y > z and verify that that the above basis is NOT a Gröbner 

basis.
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Exercise. Change the lex order to x > y > z and verify that that the above basis is NOT a Gröbner 

basis.

GroebnerBasisA9y - x2, z - x3=, 8x, y, z<, MonomialOrder ® LexicographicE

9y3
- z2, -y2

+ x z, x y - z, x2
- y=

Example. Let f1 = x y - x and f2 = x2 - y with the grlex ordering and x > y. Build a Gröbner basis.

1. We compute a S-polynomial of f1 and f2

SH f1, f2L = x2 y

x y
f1 - x2 y

x2 f2 = x f1 - y f2 = - x2 + y2

2. Then we reduce this polynomial wrt our basis < f1, f2 >

- x2 + y2 ® f2 = y2 - y

3. Since y2 is not divisible by ant LTH fkL, we add f3 = y2 - y to the basis, which is now is 

G = < f1, f2, f3 >= < x y - x, x2 - y, y2 - y >.

4. Repeat the first step.

Compute S-polynomials and reduce them over basis G

SH f1, f2L �G 0

SH f1, f3L = x y2

x y
f1 - x y2

y2 f3 = y f1 - x f3 = 0

SH f2, f3L = x 2 y2

x2 f2 - x2 y2

y2 f3 = y2 f2 - x2 f3 = x2 y - y3

x2 y - y3 = q * f2 + h = qIx2 - yM + h = yIx2 - yM + h

x2 y- y3 � f2  - y3 + y2

- y3 + y2 = q * f3 + h = qIy2 - yM + h = - yIy2 - yM + h

- y3 + y2� f3  0

Thus, < f1, f2, f3 > is a Gröbner basis

GroebnerBasis@8x y - x, x^2 - y<, 8x, y<,

MonomialOrder ® DegreeLexicographicD

9-y + y2, -x + x y, x2
- y=
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