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m Themainidea

Given a system of polynomial equations

fi=0
fs = 0
I[tformsanidea | = < fy, ..., fg> for which we cannot solve a membership problem

It's better to choose amonomial ideal

But how would you build amonomial ideal out of agiven set of polynomials?

I Monomial Ideal

m Understanding thestructure

Definition: A monomial ideal | ¢ Risan ideal generated by monomialsin R. For example,
= <Xy, X*y3, xXy>

Such anideal | consists of all polynomiaswhich are finite sums of }'q, x*, wheregx € R We will
writel = {x*, a € Ac Z0,}

Example. Given
= <X, XY?, yV*z, xyz>
Then
f=3x"+7xy3z+2y*z+ xy?Z isinl,
since

X' = () ()



Groebner Bases

xy3z = (xy?) (2
Xy 7 = (xy2)(y?)
Exercise. Given
= <x®, xy>
Verify
fi=3x* + 5x°y® isitinl?
fo=2x*y+ 7x% isitinl?
Lemma. Letl = < x* |a € A> andletx beamonomial inR. Thenxf e | < x* | x# for
some aeA.
Proof.
<) isclear.

—) Letx? e |, wecanwrite x® = Y qx X%, where gx € R. Each monomial in the sumisdivisible
by some x?, and thus x? is divisible by some x*.m

Consider | = <x?y°, x*y®, x°y>.Hereisapictureof al monomiasin .

Lemma.

Let | beamonomial ideal inRand let f € R. Then the following are equivalent
lLfel
2. every monomial of f isin|
3. f isalinear combination of monomialsin .

Thislemmawill allow usto solvethe member ship ideal problem:

a given polynomial isin the monomial ideal < if the remainder of f on
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division by generatorsis zero.

m Sizeof amonomial ideal
L emma (Emmy Noether) (1882-1935)
Let R be aring. The the following are equivalent

1. everyideal Iy c Risfinitely generated

2. every ascending sequence of ideals

lgclyc ..

terminates, i.e. I, = I, 1 for sufficiently large n.

Then we say that the ring R is Noetherian.

The Noetherian-ness of polynomial rings allows us to prove that any infinite set of polynomial
equations can be replaced with afinite set with the same solutions.

Proof.
1—2) Every ideal isfinitely generated
li= <f, ., fp >
o = < f1, oy fo0 s Tpp, >
Take their union

lo = < fl, f2, >

which is aso finitely generated. Thus we may assume that the generators are taken from the ideals
Iny woor In - IEN = max(ny ..., ny) then |, = Iy.

2—1) Suppose every ascending sequence terminates.
Letl beanideal | = < f, > that is not generated by afinite number of .
Then we can construct an infinite sequence such that

I = < fopn v T, > & Lo < fops oy fo >

Ayl
for every r that violates the ascending chain condition.m

L emma (Dickson, 1913)

Every monomial ideal J ¢ F[xq, ..., X ] isgenerated by a finite number of monomials.

The statement looks suspicious... Let R= Q{x, y], and consider < x?, x°y, x*y?, .. >.The
catch: we must elimininate redundant generators



Groebner Bases

<X, XY, XV > = < X>
Proof. By induction on the number of variables.
Ifn=1,thenlet § = min{a|Xx* € A}
Inductive step. Theresult isvalid for F[Xy, ..., X,_1]. We need to deduceit for F[Xqy, ..., Xn-1, YI.

LetJ c F[Xy, ..., Xn_1, Y] beamonomial ideal with n variables. We write amonomial in
F[X1, ..., Xn-1, Y] asx® y". Consider the following set of monomial ideals

JImC FIX1, ..y Xn-1]
In={x*e€F[X1, .., X_1] | X* y" € J}
satisfying the ascending sequence
Jclhc..

Each Ji isfinitely generated. This sequence terminates by the Noether theorem. Then theideal J is
aset of all monomials from the sequence. m

m |deal of leading terms

Fix amonomial order and | c Risanidea. We define LT(l) as aset of the leading terms of the
elements of theideal | (with respect to a given monomial order).

LT() ={LT():fel}.

Theleading termideal of I, denoted by < LT(l) > istheideal generated by LT(l). Observe, that is
unpractical to build < LT(l) >, since we will have to consider all polynomialsin the ideal and take
their leading terms. We would rather take the ideal of leading terms of generators

<LT(fy), ..., LT(f) >
There are two ideals are NOT necessarily equal.
Example. Consider | = < fy, fo> = <x?+2xVy?, xy + 2y3 — 1>. We can show that
xe < f, fo>,9nce y* f; —x = f = x

Moreover, LT(X)=xe <LT()>. Now, we consider the ideal of |eading terms of
generators

<LT(f), LT(f2) > = <x%, xy>
It followsthat x¢ < LT(fy), LT(fp) >.

The main question: isit possible to find such a set of generators that
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<LT()>= <LT(fy), ..LT(fy)>
Theorem. (Hilbert Basis Theorem)

Everyideal | in Risfinitely generated. More precisely, there exists a finite subset
G=1{01, ..., gs} c | suchthat | = {g;, ..., gs} with a property

<LT()>= <LT(g1), ..., LT(gs) >

The Hilbert theorem tells us that any ideal (monomial or otherwise) isfinitely generated. One CAN
find such subset G = {g;, ..., gs} Of generators! Thebasis{g:, ..., gs} that have aproperty
<LT()>= <LT(gy), ...LT(gs) > isquite specia!!

I Grdbner Basis

Definition: Fix amonomial order and let | be anideal. A finite subset G = {g1, ..., g} c | issaid
to be a Grobner basisif

<LT{)>= <LT(g1), ..., LT(gs) >

This meansthat asubset G = {g;, ..., g} c | of anideal | isaGrobner basisif and only if the
leading term of any element of | isdivisible by one of the LT(gy).

Example. Fix lex order and consider
| = <fy, fo>=<x¥-2xy, ¥y-2y> - x>
< f;, f, > isnotaGrébner basis. To prove thiswe first show that
XXe <LT() >
Indeed,
¥ =yf-xf, = xel=x*=LT(x*)e <LT()>

However,

X2 ¢ < LT(f), LT(f)> = <x°, X¥°y>
since X2 isnot divisible by x3 and x? y.

We will show that divison with remainder by a Grobner basisisavalid ideal membership test.

Theorem. Let G be a Grobner basisfor anideal | ¢ R. Then f € | < theremainder r on
divisionof f by Giszero. In other words,
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felsf LG 0
Proof.
—) Let f beanarbitrary polynomial in|, thendivisionyields

f=e1g1+..+60s + I

Thus, f —r €1, itfollowsthat r € |. Assumethat r 0. Then there exists k such that LT(gk)

dividesLT(r), since G isa Grobner basis. Thisis a contradiction to the fact that r is reduced wrt to
G.Thus, r =0.m

Corollary. If G= {01, ..., gs} isa Grobner basisfor theideal I, thenl = <@, ..., gs>.
Proof.
Clearly G={g1, ..., g} € I,sinceeachgc e l.

Toprovel c G, chooseany f e |. By the above theorem f isreducible by G with azero remain-
der. Thus, | c G.m

Using the idea of Grébner bases, we can easily solve a membership problem.
Algorithm

First we compute a Grobner basis G of |.

Thenwedivide f by G and get the remainder r.

Ifr =0then f liesin |, otherwise it does not.

The Hilbert theorem states that a Grobner basis exists, though it does not address away of how to
construct it.

How do we computea Grobner basis?

We will give an alternate characterization of Grobner bases which shows us a practical way to
construct them. To do this, we need to introduce the notion of S-polynomial.

m S-polynomials
Recalle the definition of a Grobner basis.

A subset G={0;, ..., O} c | of anideal | isaGrobner basisif and only if the leading
term of any element of | is divisible by one of the LT(gy).

It might happen that a polynomial f has aleading power that is divisible by two (or more) LT(gk)
and LT(gn), wherek # n. If wereduce f using gx we get apolynomial h;
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_ _ P
hy =1 Tgo
and
_ _ P
hy =1 [Tgy o

We introduced an ambiguity! But what if we consider h, — h; ??

P_ g P
LT(go K LT(gn)

hp—hy = On

Thisisaso-called S-polynomial. The S-polynomial is constructed in such away that leading terms
of two polynomials cancel each other.

Definition. Let f and g be two polynomialsin R. The S-polynomial of f and g isthe following
combination

S(f,g):—p*f——p*g

LT(f) LT(9)
where pistheleast common multiple
p = LCM( LM(f), LM(g)).
Example. Compute S(f, g)where f = X2y + 2xVy?, g=3Vy? + 2.

S(f,g):%*f—f—g*g: y*f—xé*g:——gx2+2xy3

The following theorem gives an aternate characterization of Grébner bases.
Theorem. (Buchberger's S-pair criterion)

Afiniteset G = {01, ..., gs} for anideal | isa Grobner basisif and only if

S(Gk, Gn) —c 0
(the remainder of division S(gk, gn) by Giszero) for any k and n.

This theorem suggests how we can transform an arbritary ideal basisinto a Grobner basis.
Given afiniteset Gin F[Xy, ..., X,], we can immediately test G by checking the remainder.

Example. We will provethat | = <y — x%, z — x® > isaGrébner basisfor lex order y > z > x

Consider the S-polynomial

S:y—yz(y—xz)—y—zz(z—x3): yxe— zx2

This polynomial must be divisible by the basis
yx3—zxt =x3(y-x%) - x*(z - ) +0

Exercise. Change the lex order to x > y > z and verify that that the above basisis NOT a Grébner
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basis.

| GroebnerBasis[{y -x* z-x%}, {x, y, z}, Mononial Order - Lexi cographic]

| {y3-2z%, -y*+xz, xy-z, x*-y}

Example. Let f; = xy—xand f, = x> — y with the grlex ordering and x > y. Build a Grobner basis.

1. We compute a S-polynomial of f; and f;

S(fy, f2)= % fl—%/ fo=xfi—yfh= —-x2+y?
2. Then we reduce this polynomial wrt our basis < f;, fo >

X+ o=y -y

3. Since y? isnot divisible by ant LT(fy), weadd f3 = y? — y to the basis, which is now is
G= < fy, fp, f3>= <xy-—x X°-y, Y’—y>.
4. Repeat the first step.
Compute S-polynomials and reduce them over basis G

S(fy, f2) —c O

2 2
S(fy, f3) = % fl_xy_); fa=yfi—-xfz3=0

S(fy, f3) = Xizyz fz—% fa=y? fo-x2fa= X2y—y®
y-y} = qxfo+h=qx*-y) + h=yx®-y)+h
Xy-y— -y +y
—y 4y = Qs farh=qy?-y) + h=-y(y’-y)+h
-yY+y¥— 0
Thus, < fq, fo, f3 > isaGrébner basis

G oebnerBasi s[{xy -X, X2 -y}, {X, Y},
Mononi al Or der - Degr eelLexi cogr aphi c]

2

[-y+y% -x+xy, x*-y}
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