Petkovšek's algorithm

"All the wonders of our universe can in effect be captured by simple rules, yet [...] there can be no way to know all the consequences of these rules, except in effect just to watch and see how they unfold."

Algorithm

The algorithm deals with finding a hypergeometric term solution to

$$\sum_{j=0}^{N} d_j(n) S(n + j) = 0$$

where d_j are polynomials in n. For simplicity, let us consider a second order equation

$$d_2(n) S(n + 2) + d_1(n) S(n + 1) + d_0(n) S(n) = 0 \quad (1)$$

where $S(n)$ is assumed to be a hypergeometric term

$$\frac{S(n + 1)}{S(n)} \in Q(n)$$

If all $d_k(n)$ are constants then we solve the equation by means of the characteristic equation

$$d_2 \lambda^2 + d_1 \lambda + d_0 = 0$$

The roots of this equation define the general solution

$$S(n) = c_1 \lambda_1^n + c_2 \lambda_2^n$$

If $d_k(n)$ is polynomials in n then proceed in the following way. Divide (1) by $S(n)$
\[d_2(n) \frac{S(n + 2)}{S(n)} + d_1(n) \frac{S(n + 1)}{S(n)} + d_0(n) = 0 \]

or

\[d_2(n) \frac{S(n + 2)}{S(n + 1)} \frac{S(n + 1)}{S(n)} + d_1(n) \frac{S(n + 1)}{S(n)} + d_0(n) = 0 \] \hspace{1cm} (2)

From the Gosper’s algorithm, we know that any rational function can be represented as

\[\frac{S(n + 1)}{S(n)} = c \frac{p(n + 1)}{p(n)} \frac{q(n + 1)}{r(n + 1)} \] \hspace{1cm} (3)

where \(p(n), \ q(n), \ r(n) \) are monic (the leading coefficient is 1) and coprime

\[\text{GCD}(q(n), \ r(n + j)) = 1, \ j \in \mathbb{N}_0. \]

\[\text{GCD}(p(n), \ q(n + 1)) = 1, \]

\[\text{GCD}(p(n), \ r(n)) = 1, \]

Substituting (3) into (2), yields

\[d_2(n) c \frac{p(n + 2)}{p(n + 1)} \frac{q(n + 2)}{r(n + 2)} c \frac{p(n + 1)}{p(n)} \frac{q(n + 1)}{r(n + 1)} + d_1(n) c \frac{p(n + 1)}{p(n)} \frac{q(n + 1)}{r(n + 1)} + d_0(n) = 0 \]

Multiply it by \(p(n) r(n + 1) r(n + 2) \) to get

\[c^2 d_2(n) \ p(n + 2) \ q(n + 1) \ q(n + 2) + \]

\[c \ d_1(n) \ p(n + 1) \ q(n + 1) \ r(n + 2) + \]

\[d_0(n) \ p(n) \ r(n + 1) \ r(n + 2) = 0 \] \hspace{1cm} (4)

Remember, our goal is to find \(p(n), \ q(n), \ r(n) \) and constant \(c \).

The logic in the next paragraph is somewhat similar to the proof of step 2 in Gosper’s algorithm.

The first two terms of (4) are divisible by \(q(n + 1) \), therefore the last term \(d_0(n) \ p(n) \ r(n + 1) \ r(n + 2) \) must be divisible by \(q(n + 1) \). Since \(p, \ q \) and \(r \) are relatively prime, then \(q(n + 1) \) must divide \(d_0(n) \). In other words, \(q(n + 1) \) must be a factor of \(d_0(n) \). This leads us to the finite number of choices for \(q(n + 1) \).

The last two terms of (4) are divisible by \(r(n + 2) \), therefore the first term must be divisible by \(r(n + 2) \). Since \(p, \ q \) and \(r \) are relatively prime, then \(r(n + 2) \) must divide \(d_2(n) \). In other words, \(r(n + 2) \) must be a factor of \(d_2(n) \). This leads us to finite number of choices for \(r(n + 2) \).

Once we know \(q \) and \(r \), we can easily find a rational constant \(c \). Divide (4) by \(q(n + 1) \ r(n + 2) \)
This gives us an equation with polynomial coefficients. Equating the leading coefficient to zero, generates a quadratic equation for \(c \). But \(p(n) \) is still unknown. ??? hmm... Where is a catch? \(p(n) \) is a monic polynomial.

Now the last step.

So far we found the constant \(c \) and two polynomials \(q \) and \(r \). To find the polynomial \(p \) we must solve (5). Since all coefficients in (5) are polynomials, we need to find a polynomial solution.

Let us consider a generic equation of the second order with polynomial coefficients

\[
a_2(n) \, Y(n + 2) + a_1(n) \, Y(n + 1) + a_0(n) \, Y(n) = 0
\]

We need to find an upper bound for the degree of a polynomial solution. Assume the following

\[
a_2(n) = \alpha_p \, n^p + \alpha_{p-1} \, n^{p-1} + ... \\
a_1(n) = \beta_p \, n^p + \beta_{p-1} \, n^{p-1} + ... \\
a_0(n) = \gamma_p \, n^p + \gamma_{p-1} \, n^{p-1} + ...
\]

where \(P \) is the maximal degree of \(a_2, a_1 \) and \(a_0 \), and all coefficients \(\alpha_j, \beta_j, \gamma_j \) are known. We are looking for a monic polynomial solution

\[
Y(n) = n^M + \delta_{M-1} n^{M-1} + ... \\
Y(n + 1) = n^M + (M + \delta_{M-1}) n^{M-1} + ... \\
Y(n + 2) = n^M + (2M + \delta_{M-1}) n^{M-1} + ...
\]

where order \(M \) and coefficients \(\delta_k \) are to be determined. Substitute these into the difference equation and take coefficients of the first three dominant terms. We obtain

\[
n^M + P : \alpha_p + \beta_p + \gamma_p \\
n^M + P - 1 : \alpha_{p-1} + \beta_{p-1} + \gamma_{p-1} + M \, (2 \, \alpha_p + \beta_p) + (2 \, \alpha_p + \beta_p + \gamma_p) \, \delta_{M-1} \\
n^M + P - 2 : \frac{1}{2} \left(4 \, \alpha_p + \beta_p \right) M^2 + \left(2 \, \alpha_{p-1} + \beta_{p-1} - 2 \, \alpha_p - \frac{\beta_p}{2} + (2 \, \alpha_p + \beta_p) \, \delta_{M-1} \right) M + \alpha_{p-2} + \beta_{p-2} + \gamma_{p-2} + (2 \, \alpha_p + \beta_p + \gamma_p) \, \delta_{M-2} + (\alpha_{p-1} - 2 \, \alpha_p + \beta_p - \gamma_p) \cdot \delta_{M-1}
\]

Each of them must be zero. Start with the first

\[
\alpha_p + \beta_p + \gamma_p = 0 \tag{6}
\]

If this condition is not satisfied, then no polynomial solution exists. Suppose (6) is satisfied, then the
next coefficient gives
\[\alpha_{p-1} + \beta_{p-1} + \gamma_{p-1} + M (2 \alpha_p + \beta_p) + (\alpha_p + \beta_p + \gamma_p) \delta_{M-1} = 0 \]
or
\[\alpha_{p-1} + \beta_{p-1} + \gamma_{p-1} + M (2 \alpha_p + \beta_p) = 0 \]
(7)
This splits into two subcases
1) case
\[2 \alpha_p + \beta_p \neq 0 \]
then the order \(M \) is uniquely defined from (7)
\[M = \frac{-\alpha_{p-1} + \beta_{p-1} + \gamma_{p-1}}{2 \alpha_p + \beta_p} \]
(8)
2) case
\[2 \alpha_p + \beta_p = 0 \]
Then
\[\alpha_{p-1} + \beta_{p-1} + \gamma_{p-1} = 0 \]
(9)
and we must look at the next coefficient (a coefficient by \(n^{M+P-2} \)) that is
\[\alpha_p M^2 + (2 \alpha_{p-1} + \beta_{p-1} - \alpha_p) M + \alpha_{p-2} + \beta_{p-2} + \gamma_{p-2} = 0 \]
(10)
Observe, that \(\alpha_p \neq 0 \), because otherwise \(\beta_p = 0 \) and then by (6) \(\gamma_p = 0 \), which will contradict to the assumption that \(p \) has a maximal degree of \(p_2, \ p_1 \) and \(p_0 \). Therefore, equation (10) has two solutions, one (or both) defines the upper degree of a polynomial solution.

Example

Find a hypergeometric term solution to
\[9 (n+2) S(n+2) - 3 (n+4) S(n+1) - 2 (n+3) S(n) = 0 \]
\[S(0) = S(1) = 1 \]
We assume that
\[\frac{S(n+1)}{S(n)} = c \frac{p(n+1)}{p(n)} \frac{q(n+1)}{r(n+1)} \]
where
\[q(n+1) \text{ must divide } d_0(n) \]
\[r(n+2) \text{ must divide } d_2(n) \]
Here are our choices

\[q(n + 1) \text{ is either } 1 \text{ or } n + 3 \]
\[r(n + 2) \text{ is either } 1 \text{ or } n + 2 \]

\(\blacksquare \) **q(n+1) = 1; r(n+2)=1**

We find constant \(c \) from the equation (since \(p, q \) and \(r \) are monic, we replace them by 1 in equation (5))

\[c^2 d_2(n) + c d_1(n) + d_0(n) = 0 \]

that simplifies to

\[9(n + 2) c^2 - 3(n + 4) c - 2(n + 3) = 0 \]
\[n(9 c^2 - 3 c - 2) + 6(3 c^2 - 2 c - 1) = 0 \]

Solving

\[9 c^2 - 3 c - 2 = 0 \]

we obtain

\[c = -\frac{1}{3} \text{ or } c = \frac{2}{3} \]

Note, constant \(c \) is defined only by a leading coefficient of equation (5).

Case 1. \(c = -\frac{1}{3} \)

We need to find a polynomial solution to

\[(n + 2) p(n + 2) + (n + 4) p(n + 1) - 2(n + 3) p(n) = 0 \]

Compute

\[\alpha_p + \beta_p + \gamma_p = 1 + 1 - 2 = 0 \]
\[\alpha_{p-1} + \beta_{p-1} + \gamma_{p-1} + M(2 \alpha_p + \beta_p) = 2 + 4 - 6 + M(2 + 1) = 0 \]

The solution \(p(n) \) is a constant, since \(M = 0 \). Therefore, we have

\[\frac{S(n + 1)}{S(n)} = c \frac{p(n + 1)}{p(n)} \frac{q(n + 1)}{r(n + 1)} = -\frac{1}{3} \frac{p(n + 1)}{p(n)} \frac{1}{1} = -\frac{1}{3} \]

or

\[Y(n) = \left(-\frac{1}{3} \right)^n \]

Case 2. \(c = \frac{2}{3} \)

We find an upper bound on the polynomial solution
The first condition (the sum of leading coefficients should be zero)

\[\alpha_p + \beta_p + \gamma_p = 0 \]

The next condition

\[\alpha_{p-1} + \beta_{p-1} + \gamma_{p-1} + M (2 \alpha_p + \beta_p) = 0 \]

which is

\[3M - 3 = 0 \]

So, the solution is linear

\[p(n) = n + x \]

where \(x \) is unknown. We find \(x \) by substituting \(p(n) \) into the original equation

\[(2n + 4)(n + 2 + x) - (n + 4)(n + 1 + x) - (n + 3)(n + x) = 0 \]

This simplifies to

\[4 - 3x = 0 \]

Thus,

\[p(n) = n + \frac{4}{3} \]

And

\[
\frac{S(n + 1)}{S(n)} = c \frac{p(n + 1)}{p(n)} \frac{q(n + 1)}{r(n + 1)} = 2 \frac{n + \frac{7}{3}}{n + \frac{4}{3}} \frac{1}{1} = \frac{2}{3} \frac{3n + 7}{3n + 4}
\]

or

\[S(n) = \frac{3n + 4}{4} \left(\frac{2}{3} \right)^n \]

Finally, we combine the above two cases to get a general solution

\[S(n) = c_1 \left(-\frac{1}{3} \right)^n + c_2 \frac{3n + 4}{4} \left(\frac{2}{3} \right)^n \]

where unknown \(c_1 \) and \(c_2 \) can be easily found from the initial conditions

\[S(0) = S(1) = 1 \]

We get a system of two linear equations

\[c_1 + c_2 = 1 \]

\[c_1 \left(-\frac{1}{3} \right) + c_2 \frac{7}{4} \left(\frac{2}{3} \right) = 1 \]
solving each, yields

\[
c_1 = \frac{1}{9} \quad \text{and} \quad c_2 = \frac{8}{9}
\]

Hence,

\[
S(n) = \frac{1}{9} \left(-\frac{1}{3} \right)^n + \frac{8}{9} \frac{3n + 4}{4} \left(\frac{2}{3} \right)^n
\]

q(n+1) = 1; r(n+2)=n+2

Equation for constant \(c \)

\[-2n^2 + (-3c - 8)n + 3(3c^2 - 4c - 2) = 0\]

Such constant \(c \) does not exist

q(n+1) = n+3; r(n+2)=1

Equation for constant \(c \)

\[9c^2n^2 + 3c(18c - 1)n + 2(36c^2 - 6c - 1) = 0\]

It has only a trivial solution \(c = 0 \).

q(n+1) = n+3; r(n+2)=n+2

This case cannot be chosen, since they have a common polynomial GCD:

```plaintext
q[n_] := n + 2;
r[n_] := n
Table[PolynomialGCD[q[n], r[n + j]], {j, 0, 5}]

{1, 1, 2 + n, 1, 1, 1}
```

References
