
A New Kind of Language

Victor Adamchik
http://www.cs.cmu.edu/~adamchik

Presentation plan

Architecture

Expressions

Evaluator

Language + Libraries + Compiler

In WL they are all bundled together…

Pattern Matching

Web-based

repositories

Architecture

kernel

front end
C-link

J-link

NLP

kernel2

Distributed
computing

The kernel and the front end are separate programs, and each can be
used without of the other.

TWL - another kind of language,
a knowledge-based language

Create your program in the Wolfram Language

and deploy it everywhere.

Everything is an expression

The basic data objects used in Mathematica are
called “expressions”.

Expressions can be classified as either “atomic”
expressions or “compound” expressions.

The exact internal structure of an expression
depends on whether the expression is a normal
expression, a symbol, a number, or a string.

Expression Structure

A Lisp-like structure – a list (head arg1 … argn)

Each element can be accessed directly via Part
(via BFS ordering), head is at index [[0]]

In WL head[arg1, ..., argn], like Plus[2, 2]

f[x_] := x^2;

Function definition is a pattern-based.

f[x_Integer] := x^3;

How expressions are evaluated?
WL is a term rewriting system - whenever an
expression is entered, it is evaluated by using
rewrite rules.

It is necessary to understand the order in
which the various parts of an expression are
evaluated by term rewriting.

Transformation rules are defined in WL and
stored as expressions.
For example, x=5 is {HoldPattern[x] :> 5}

f[x_,y_]:=x+y is {HoldPattern[f[x_,y_]] :> x + y}

x1 + Sin[x] * f[x, y]^2
Symbol x might have early
defined values, so those rules are
stored at OwnValues[x].

The symbols could be heads
(parents) of some expressions.

Definition for g had no chance to execute.

g[x_]:=x^2;

g = h;

g[5]

So g[5] returns h[5].

x1 + Sin[x] * f[x, y]^2

The parent (head) might have
early defined rules,
f[x_, y_] := x + y
so those rules are stored at
DownValues[f]. This rule is only
applied when encountered with
arguments downwards.

A function might have
several rules.

{HoldPattern[f[2]] :> 11,

HoldPattern[f[x_, y_]] :> x + y,

HoldPattern[f[x_]] :> x^2}

The rules will be applied in order – more specific rules first!

x1 + Sin[x] * f[x, y]^2

Sometimes you want to
assigned rules to a symbol only
if it has a special case. For
example, x1 = 2. This type of a
pattern is handled by
UpValues.

In WL this is x /: Subscript[x,1] := 2

The rule is NOT assigned to x nor
Subscript.

SubValues: Derivative[1][f][x^2]

We cannot assign a rule to f′ = D[f] , it’s
not a symbol.

We cannot assign a rule to f′ [Power], it’s
math wrong.

This defines neither an OwnValue nor
a DownValue …

Such rules are applied through SubValues.

Its behavior is not well documented.

DownValues and OwnValues are applied before SubValues.

f [g [x]]

UpValues for g are applied before DownValues for f

This does not mean that UpValues for g will be applied
before DownValues g.

All these are not well documented….

But the picture is even more complicated….

Controlling the evaluation

I should point out that the user can (to some extent) control the
evaluation process.

I indicate functions that can be used:

Hold, HoldAll, HoldAllComplete, HoldComplete, HoldFirst, HoldRest,
HoldPattern, ReleaseHold, SequenceHold, Evaluate, Unevaluated,

Inactive, Activate

It should be clear by now that using Values (4) with Hold (10)
attributes creates a million combinations which is impossible to
describe and therefore document.

The Evaluation Process
Evaluate symbols with OwnValues

Evaluate the head (with OwnValues)

Evaluate the arguments from left to right.

If the head has Hold-attributes, do not evaluate arguments.

Evaluate the head with arguments. (DownValue)

Evaluate the resulting expression

Apply UpValues for arguments

Apply SubValues

Again, the process is not documented, so I could be wrong…

Pattern Matching

A single blank is used to represent an individual expression, which
can be any data object.

MatchQ[x^2,_]

MatchQ[x^2,x^_]

MatchQ[x^2,x^_Integer]

MatchQ[x^2,_Power]

MatchQ[x^2,_^_]

MatchQ[x^2,_^2]

Alternative Pattern Matching

A | specifies alternative patterns

f[a_Real | a_Integer]:= a - 1

MatchQ[x^2,{_}| _^2]

Pure Functions
square[x_]:= x^2

is the same as
Function[#^2]

is the same as
(#^2)&

is the same as
Function[x, x^2]

Thus, (#^2)&[5] is 25

What is (#^3)&[(#+2)&[3]] ? 125

What is (#[[1]]^#[[2]])&[{2,3}] ?? 8

Conditional Pattern Matching

making it contingent upon meeting certain conditions

f[x_?EvenQ]:= x;

f[x_?OddQ]:= x^2;

f[x_]/;Element[x, Reals] && x > 1 := 1/x

MatchQ[2,_?(#>3&)]

MatchQ[2,_Integer ?(#>3&)]

MatchQ[a^b, _^y_/;Head[y] == Symbol]

Pattern Matching Complexity

bar[a_ * b_, x_] := bar[b, x] /; FreeQ[a, x]

sort[xs___,x_,y_,ys___]:= sort[xs,y,x,ys]/;x > y

We have no idea how efficient Mathematica's
pattern matching…

Bubble sort:

The above could be very expensive. For example

bar[a*b*c*d*e*f*x, x] has a linear complexity

Higher-order Functions
Apply, Map, MapThread, Nest,

NestList, Fold, FoldList, FixedPoint,

FixedPointList, Inner, Outer

Fold[#1^#2&, x, {a, b, c, d}]

What is Fold[1/(#1+#2)&,x,{1,1,1,1}] ?

CF: 1/(1+1/(1+1/(1+x)

is (((xa)b)c)

FoldList[#1^#2&,x,{a,b,c,d}]

gives
{x,xa,(x^a)b,((x^a)^b)c,(((x^a)^b)^c)d}

Mandelbrot Set
The Mandelbrot set is the set of all complex
numbers c for which sequence defined by the
iteration

f(n+1) = f(n)2+c, f(0) = c

remains bounded.

FixedPoint[#2 + c &, c]

FixedPoint[#2 + c &, c,

SameTest->(Abs[#2-#1] > 10&)]

Mandelbrot[x_]:=

Length[FixedPointList[#2 + c &, c, 80,

SameTest->(Abs[#2-#1] > 10&)]]

Mandelbrot Set
DensityPlot[-Mandelbrot[x + y I],
{x,-2,0.5},{y,-1,1}, Mesh->False,
Frame->False, AspectRatio->Automatic,
PlotPoints->125];

Programming Styles

Procedural Programming

Functional Programming

Rule-Based Programming

Dynamic Programming

Compute n!

Procedural

procedural[x_] :=

Module[{prod = 1,ind = 1},

If[!(IntegerQ[x] && Positive[x]), Return[]];

While[ind <= x, prod *= ind; ind++];

Return[prod]

]

Recursive

rec[1] = 1

rec[x_Integer?Positive] := x rec[x-1]

Functional

functional[x_Integer?Positive] := Times @@ Range[x]

This is the fastest…

Internal Hashing

dp[x_Integer?Positive] := dp[x] = Times @@ Range[x]

All intermediate results are stored…

Numeric Computations
N[Pi] – default machine precision ($MachinePrecision)

Machine numbers work by making direct use of the
numerical capabilities of your underlying computer
system.

N[Pi, 5000] – arbitrary precision

Arbitrary precision computations are based on GMP.

GMP is a free GNU library for arbitrary precision
arithmetic, operating on signed integers, rational
numbers, and floating-point numbers with no
practical limit to the precision except the ones
implied by the available memory.

