Computer Science 355 Modern Computer Algebra

Assignment 4

solutions

Problem 1

Let X = C([0, 1]) be the set of all continuous functions with domain [0, 1], and range \mathbb{R} . Further impose a ring structure on this set by making * and + function multiplication and addition. Prove that the set $M = \{f \in X \mid f(1) = 0\}$ is an ideal in this ring.

First show that M is an ideal using the ideal test. $M \neq 0$, because the constant 0 function, f(x) = 0, $\forall x \in M$. Let $f, g \in M$. Then (f(0g)(1) = f(1) - g(1) = 0, so $f - g \in M$. Now let $f \in M$ and $f \in M$. We have (f(f)(1) = f(f(f(1))) = f(f(f(1))) = f(f(f(1)) = f(f(1)) = f

Problem 2

Given two ideals I and J of a ring R with 1 such that I+J=R. Show that there is some $x \in R$ such that $x-a \in I$ and $x-b \in J$ for all $a, b \in R$.

As I+J=R, we have $r \in I$ and $s \in J$ such that r+s=1.

Then $s - 1 = -r \in I$, and $r - 1 = -s \in J$.

Let $x = a s + b r \in R$, then $x - a = a (s - 1) + b r \in I$

and $x - b = a s + b (r - 1) \in J$.

Problem 3

Determine whether a given polynomial is in an ideal

1.
$$x^3 + 2x^2 + 2x + 1$$
, $I = \{x + 1\}$

2.
$$x^2 - 4x + 4$$
, $I = \{x^3 - 6x^2 + 12x - 8, 2x^3 - 10x^2 + 16x - 8\}$

3.
$$x^3 - 1$$
, $I = \{x^9 - 1, x^5 + x^3 - x^2 - 1\}$

1. Polynomial $x^3 + 2x^2 + 2x + 1$ is in ideal. $\{x + 1\}$, since

Factor
$$[x^3 + 2x^2 + 2x + 1]$$

(1 + x) $(1 + x + x^2)$

2. Polynomial $x^2 - 4x + 4$ is in ideal $\{x^3 - 6x^2 + 12x - 8, 2x^3 - 10x^2 + 16x - 8\}$, since

Expand
$$\left[-\left(\mathbf{x}^3 - 6 \, \mathbf{x}^2 + 12 \, \mathbf{x} - 8 \right) + \frac{1}{2} \left(2 \, \mathbf{x}^3 - 10 \, \mathbf{x}^2 + 16 \, \mathbf{x} - 8 \right) \right]$$

Another proof

PolynomialGCD
$$\left[\mathbf{x}^3 - 6 \, \mathbf{x}^2 + 12 \, \mathbf{x} - 8 \,, \, 2 \, \mathbf{x}^3 - 10 \, \mathbf{x}^2 + 16 \, \mathbf{x} - 8 \right]$$

3. Polynomial $x^3 - 1$ is in ideal $\{x^9 - 1, x^5 + x^3 - x^2 - 1\}$

First proof

$$x^{9} - 1 = (x^{3} - 1)(x^{6} + x^{3} + 1)$$
$$x^{5} + x^{3} - x^{2} - 1 = (x^{3} - 1)(x^{2} + 1)$$

Second proof

Expand[(
$$x^9 - 1$$
) x +
($x^5 + x^3 - x^2 - 1$) (- $x^5 + x^3 - x^2 - x + 1$)]
-1 + x^3

Problem 4

Working in Q[x, y, z] and using the lex order with x > y > z, prove that $\{x - y, y^2 + z\}$ is a Gröbner basis

Compute S-polynomial

$$S(f, g) = \frac{xy^2}{x}f - \frac{xy^2}{y^2}g = y^2f - xg = -xz - y^3$$

and then reduce it wrt the basis

$$-xz-y^3 \rightarrow_{x-y} = -y^3 - yz \rightarrow_{y^2+z} = 0$$

V. Adamchik HW 4 - solutions 3

Problem 5

Find a Gröbner basis for $\langle z + y x^2, zx + y \rangle$ with respect to lex with x < y < z.

Compute S-polynomial

$$S(f_1, f_2) = \frac{zx}{z} f_1 - \frac{zx}{zx} f_2 = yx^3 - y$$

Adjust the basis:

$$< z + y x^2, z x + y, y x^3 - y >$$

Compute S-polynomial

$$S(f_2, f_3) = \frac{zyx^3}{z} f_2 - \frac{zyx^3}{zx} f_3 = zy + y^2 x^2$$
$$S(f_2, f_3) \to_{f_1} = 0$$

Skip $S(f_1, f_3)$, since

$$LCM(LM(f_1), LM(f_3)) = LM(f_1), LM(f_3)$$

Reduce it wrt the basis, to get

$$< z + y x^2, y x^3 - y >$$

$$\begin{split} & \texttt{GroebnerBasis} \big[\big\{ \textbf{x}^2 \ \textbf{y} \ + \ \textbf{z}, \ \textbf{x} \ \textbf{z} \ + \ \textbf{y} \big\}, \ \{ \textbf{z}, \ \textbf{y}, \ \textbf{x} \} \, \big] \\ & \big\{ - \, \textbf{y} + \, \textbf{x}^3 \ \textbf{y}, \ \textbf{x}^2 \ \textbf{y} + \, \textbf{z} \, \big\} \end{split}$$

Problem 6

Find a Gröbner basis for $\langle x^2 y + z, xz + y \rangle$ with respect to lex with x > y > z.

Compute S-polynomial

$$S(f_1, f_2) = \frac{x^2 yz}{x^2 y} f_1 - \frac{x^2 yz}{xz} f_2 = xy^2 - z^2$$

Adjust the basis:

$$< x^2 y + z, \ x z + y, x y^2 - z^2 >$$

Compute S-polynomial

$$S(f_2, f_3) = \frac{xy^2z}{xz}f_2 - \frac{xy^2z}{xy^2}f_3 = y^3 + z^3$$

Adjust the basis:

$$< x^2 y + z, xz + y, xy^2 - z^2, y^3 + z^3 >$$

Compute S-polynomial

$$S(f_3, f_4) = \frac{xy^3}{xy^2} f_3 - \frac{xy^3}{y^3} f_4 = -xz^3 - yz^2$$
$$S(f_3, f_4) \to_{f_2} = 0$$

Compute S-polynomial

$$S(f_1, f_3) = \frac{x^2 y^2}{x^2 y} f_1 - \frac{x^2 y^2}{x y^2} f_3 = x z^2 + y z$$
$$S(f_1, f_3) \to_{f_2} = 0$$

Compute S-polynomial

$$S(f_1, f_4) = \frac{x^2 y^3}{x^2 y} f_1 - \frac{x^2 y^3}{y^3} f_4 = -x^2 z^3 + y^2 z$$
$$S(f_1, f_4) \to_{f_2} = 0$$

The Groebner basis

$$< x^2 y + z, xz + y, xy^2 - z^2, y^3 + z^3 >$$

GroebnerBasis
$$\left[\left\{\mathbf{x}^2\ \mathbf{y}\ +\ \mathbf{z}\ ,\ \mathbf{x}\ \mathbf{z}\ +\ \mathbf{y}\right\},\ \left\{\mathbf{x}\ ,\ \mathbf{y}\ ,\ \mathbf{z}\right\}\right]$$

$$\{y^3 + z^3, y + xz, xy^2 - z^2, x^2y + z\}$$