15-354: Midterm

Tuesday, March 16, 2021 Posted: 10:00

Instructions

- You have 24 hours to work on this test.
- Feel free to email the course staff with questions.
- You may also post to piazza, but make your posts private.
- When you are done, submit to Gradescope.
- Good luck.

Problem 1: Wurzelbrunft Functions (30 pts.)

Someone has given Wurzelbrunft a recursion theory book for his birthday. He finds large function values produced by monsters such as the Ackermann function confusing, so he decides to study k-Wurzelbrunft functions: any total computable function $f : \mathbb{N} \to \mathbb{N}$ such that f(x) < k for all x. Here $k \in \mathbb{N}$.

Wurzelbrunft thinks that, for sufficiently small k, all k-Wurzelbrunft functions are primitive recursive. Help him come up with an actual theorem and a proof. The stronger the theorem, the better.

- A. Clearly state your k-Wurzelbrunft theorem.
- B. Prove your theorem.

Problem 2: Growth and Decidability (30 pts.)

Suppose $A \subseteq \mathbb{N}$. It is often important to understand the behavior of the corresponding growth function $f_A : \mathbb{N} \to \mathbb{N}$ defined by

$$f_A(n) =$$
 cardinality of $A \cap \{0, 1, \dots, n-1\}$

For example, when A is the set of primes, the corresponding prime-counting function has been studied in great detail in number theory. It behaves roughly like $n/\ln n$, but the details are very messy.

- A. Show that f_A is computable whenever A is decidable.
- B. Show that A must be decidable when f_A is computable.
- C. Now assume that A is semidecidable and f_A is computable. Give another decision algorithm for membership in A (different from the one in part (B)).

Comment: This is not frivolous; it is important in Kolmogorov complexity.

Problem 3: Magic (40 pts.)

Background

Fix some set $A \subseteq \mathbb{N}$. Suppose we modify a register machine by adding a an instruction magic k 1 which executes as follows: the machine reads the number r in register R_0 . Then it magically figures out whether r is in A; if so, execution continues in line k, and in line l otherwise.

Call these gizmos *A*-**RMs**.

Task

- A. Show that all A-RM can be simulated by an ordinary RM iff A is decidable.
- B. For any A, construct a set H that cannot be decided by an A-RM.
- C. Suppose you have access to a K-RM where K is the Halting set (for ordinary RMs). Explain how to exploit this to prove or disprove the Goldbach conjecture: every even number larger than 2 is the sum of two primes.

Problem 4: Tally Languages (30 pts.)

Languages $L \subseteq \{a\}^*$ are referred to as **tally languages**. Let $c(n) = |L \cap \{\varepsilon, a, \dots, a^{n-1}\}|$ and define the **density** of L to be $\Delta(L) = \lim_{n \to \infty} c(n)/n$. For example, $\Delta((aa)^*) = 1/2$. Regular tally languages are fairly easy to describe.

- A. Characterize the minimal DFAs associated with regular tally languages.
- B. Explain how to compute the density $\Delta(L)$ for any regular tally language L.

Problem 5: Word Shuffle (30 pts.)

The word shuffle operation, in symbols \parallel , is a map from $\Sigma^* \times \Sigma^*$ to $\mathfrak{P}(\Sigma^*)$ defined by

$$\varepsilon \parallel y = y \parallel \varepsilon = \{y\}$$
$$xa \parallel yb = (x \parallel yb) a \cup (xa \parallel y) b$$

As usual, we can extend the operation to languages by

$$K \parallel L = \bigcup \{ x \parallel y \mid x \in K, y \in L \}$$

For example,

 $aa \parallel bbb = \{aabbb, ababb, abbab, abbba, baabb, babab, babab, bbaba, bbaba, bbbaa\}$

Also, $(aa)^* \parallel (bb)^*$ is the set of all even/even words.

- A. Given two words x and y, construct a finite state machine M that accepts $x \parallel y$.
- B. Let $M_i = \langle Q_i, \Sigma, \delta_i; q_{0i}, F_i \rangle$, i = 1, 2, be two DFAs accepting regular languages L_i . Show how to construct a finite state machine M that accepts the shuffle language $L_1 \parallel L_2$. Make sure to specify the state set, the transitions, initial and final states.

Problem 6: Regularity (40 pts.)

Background

Let $\Sigma = \{a, b\}$. Define the **mod counter languages** (with parameters m and n) to be

$$L_{m,n} = \{ x \in \Sigma^* \mid \#_a x = 0 \pmod{m}, \#_b x = 0 \pmod{n} \}$$

and define the **copy language** to be

$$L_{\rm cp} = \{ zz \in \Sigma^{\star} \mid z \in \Sigma^{\star} \}$$

Task

- A. Construct the "natural" minimal DFA $\mathcal{A}_{m,n}$ that recognizes $L_{m,n}$.
- B. Find a "one-line" proof that all these automata are indeed minimal.
- C. Use quotients to show that the copy language fails to be regular.