15-354: Midterm

Tuesday, March 16, 2021
Posted: 10:00

Instructions

- You have 24 hours to work on this test.
- Feel free to email the course staff with questions.
- You may also post to piazza, but make your posts private.
- When you are done, submit to Gradescope.
- Good luck.

Problem 1: Wurzelbrunft Functions (30 pts.)

Someone has given Wurzelbrunft a recursion theory book for his birthday. He finds large function values produced by monsters such as the Ackermann function confusing, so he decides to study k-Wurzelbrunft functions: any total computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(x)<k$ for all x. Here $k \in \mathbb{N}$.

Wurzelbrunft thinks that, for sufficiently small k, all k-Wurzelbrunft functions are primitive recursive. Help him come up with an actual theorem and a proof. The stronger the theorem, the better.
A. Clearly state your k-Wurzelbrunft theorem.
B. Prove your theorem.

Problem 2: Growth and Decidability (30 pts.)

Suppose $A \subseteq \mathbb{N}$. It is often important to understand the behavior of the corresponding growth function $f_{A}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
f_{A}(n)=\text { cardinality of } A \cap\{0,1, \ldots, n-1\}
$$

For example, when A is the set of primes, the corresponding prime-counting function has been studied in great detail in number theory. It behaves roughly like $n / \ln n$, but the details are very messy.
A. Show that f_{A} is computable whenever A is decidable.
B. Show that A must be decidable when f_{A} is computable.
C. Now assume that A is semidecidable and f_{A} is computable. Give another decision algorithm for membership in A (different from the one in part (B)).
Comment: This is not frivolous; it is important in Kolmogorov complexity.

Problem 3: Magic (40 pts.)

Background

Fix some set $A \subseteq \mathbb{N}$. Suppose we modify a register machine by adding a an instruction magic $\mathrm{k} l$ which executes as follows: the machine reads the number r in register R_{0}. Then it magically figures out whether r is in A; if so, execution continues in line k, and in line l otherwise.

Call these gizmos A-RMs.
Task
A. Show that all $A-\mathrm{RM}$ can be simulated by an ordinary RM iff A is decidable.
B. For any A, construct a set H that cannot be decided by an $A-\mathrm{RM}$.
C. Suppose you have access to a K-RM where K is the Halting set (for ordinary RMs). Explain how to exploit this to prove or disprove the Goldbach conjecture: every even number larger than 2 is the sum of two primes.

Problem 4: Tally Languages (30 pts.)
Languages $L \subseteq\{a\}^{\star}$ are referred to as tally languages. Let $c(n)=\left|L \cap\left\{\varepsilon, a, \ldots, a^{n-1}\right\}\right|$ and define the density of L to be $\Delta(L)=\lim _{n \rightarrow \infty} c(n) / n$. For example, $\Delta\left((a a)^{\star}\right)=1 / 2$.
Regular tally languages are fairly easy to describe.
A. Characterize the minimal DFAs associated with regular tally languages.
B. Explain how to compute the density $\Delta(L)$ for any regular tally language L.

Problem 5: Word Shuffle (30 pts.)
The word shuffle operation, in symbols $\|$, is a map from $\Sigma^{\star} \times \Sigma^{\star}$ to $\mathfrak{P}\left(\Sigma^{\star}\right)$ defined by

$$
\begin{aligned}
\varepsilon \| y & =y \| \varepsilon=\{y\} \\
x a \| y b & =(x \| y b) a \cup(x a \| y) b .
\end{aligned}
$$

As usual, we can extend the operation to languages by

$$
K \| L=\bigcup\{x \| y \mid x \in K, y \in L\}
$$

For example,

$$
a a \| b b b=\{a a b b b, a b a b b, a b b a b, a b b b a, b a a b b, b a b a b, b a b b a, b b a a b, b b a b a, b b b a a\}
$$

Also, $(a a)^{\star} \|(b b)^{\star}$ is the set of all even/even words.
A. Given two words x and y, construct a finite state machine M that accepts $x \| y$.
B. Let $M_{i}=\left\langle Q_{i}, \Sigma, \delta_{i} ; q_{0 i}, F_{i}\right\rangle, i=1,2$, be two DFAs accepting regular languages L_{i}. Show how to construct a finite state machine M that accepts the shuffle language $L_{1} \| L_{2}$. Make sure to specify the state set, the transitions, initial and final states.

Problem 6: Regularity (40 pts.)

Background

Let $\Sigma=\{a, b\}$. Define the mod counter languages (with parameters m and n) to be

$$
L_{m, n}=\left\{x \in \Sigma^{\star} \mid \#_{a} x=0 \quad(\bmod m), \#_{b} x=0 \quad(\bmod n)\right\}
$$

and define the copy language to be

$$
L_{\mathrm{cp}}=\left\{z z \in \Sigma^{\star} \mid z \in \Sigma^{\star}\right\}
$$

Task

A. Construct the "natural" minimal DFA $\mathcal{A}_{m, n}$ that recognizes $L_{m, n}$.
B. Find a "one-line" proof that all these automata are indeed minimal.
C. Use quotients to show that the copy language fails to be regular.

