
15-354: CDM K. Sutner

Assignment 6 Due: November 3, 2023, 24:00.

1. Equational Theories (30)

Background
Suppose we have a language of first-order logic that has only function symbols (plus equality). In this case the only
atomic formulae look like

f(x, g(x, y)) = h(y, x)

By an equational theory we mean a set Γ of equations of this kind (where one should think of all the variables as
being universqally quantified). Equational theories are hugely important in algebra. By a model of Γ we mean any
first-order structure that satisfies all the axioms in Γ .

Task

A. Suppose we have only one unary function symbol f and a single axiom of the form γn ≡ fn(x) = x, n ≥ 0. Find
all the models of γn up to isomorphism.

B. Find a way to express groups as an equational theory.

C. Wurzelbrunft thinks he has found an exceedingly clever equational theory that has only infinite models. What
do you say?

D. Show how to define a product operation on the models of an equational theory so that, for all models M1 and
M2, the product M1 × M2 is another model (that depends on both M1 and M2)

Comment For part (B), you need to specify the language as well as the axioms. For part (C), recall that all our
first-order structures are required to have at least one element. Lastly, in (D), the product M1 × M2 has to depend
on both M1 and M2, and it has to be useful.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Equational Theories
Part A: Unary Function
Think of the models as digraphs with out-degree 1. For n > 0, each connected component is a cycle of length k where
k divides n. There can be arbitrarily many of these components.
For n = 0 the axiom reads x = x and has no impact. In this case, any digraph with out-degree 1 is a model. The
connected components now look like one of the following: cycles with trees attached to them (the transients of the f
orbits), or a copy of N, or a copy of Z.

Part B: Groups
Three functions of arity (2,1,0), say, f , λx.x−1, 1. Axioms f(f(x, y), z) = f(x, f(y, z)), f(x, x−1) = f(x−1, x) = 1,
f(x, 1) = f(1, x) = x.

Part C: Wurzelbrunft
No, this cannot work. There is always a model with just one element, typically a banana. All function are constant.



Part D: Product
For simplicity, suppose there is only one binary function symbol f . Given models Mi = ⟨Mi; Fi⟩, define a new structure
with carrier set M = M1 × M2 and function F ((x1, x2), (y1, y2)) = (F1(x1, y1), F2(x2, y2)).
It is easy to check that all the axioms are satisfied in the product.

CDM HW 6 2 of 8



2. Arithmetic Transducers (30)

Background
In the following we will always use reverse binary representations of natural numbers, so the value of a string x =
x0x1 . . . xn−1 ∈ 2⋆ is val(x) =

∑
i<n xi2i. We do not allow trailing zeros, except for the string ’0’ with value 0 : N, so

numbers are represented by the regular language N = {0} ∪ {0, 1}⋆1. Note that, restricted to N , val is a bijection.
Now suppose we have some transducer T defining a transduction τ ⊆ N ×N . We say that T implements an arithmetic
function f : N → N if

τ = { (val(x), f(val(x)) | x ∈ N }
For example, the following transducer implements the successor function:

1 2

3 4

1/0

0/1 ε/1
0/1

a/a

1/0

Task

A. Construct a transducer that implements the function n 7→ n + 2 and prove correctness.

B. Construct a transducer that implements the function n 7→ n + 3 and prove correctness.

C. Construct a transducer that implements the function n 7→ 3n + 2 and prove correctness.

Comment
“Construct” here means: build it explicitly, don’t just argue that it must exist. The machines only require 5/7/6
states (assuming I did not screw up somewhere). It may help to assume initially that ε for zero and trailing zeros are
allowed, and then refine the machines so that they handle the additional constraints.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Arithmetic Transducers
Part A: Plus 2
It is a good idea to think about correctness first: how do we design a machine that performs certain arithmetical
operations? Let’s focus on adding 2 and not worry about the details of the numeration system initially. In terms of
bit-patterns, adding 2 means the following:

a 1k ⇝ a 0k 1
a 1k 0 x ⇝ a 0k 1 x
a 0 x ⇝ a 1 x

Here k ≥ 0, a ∈ 2 and x ∈ 2⋆. The first rule increases the length of the string by 1, the other two are length-preserving.
Suffix x can be handled by a copy-loop state (like state 3 above), and switching 1s to 0s by a flip-loop state (like state
2 above). Since there are only finitely many cases to check, one can verify that the following machine really works.

CDM HW 6 3 of 8



0 1 2

4

a/a

0/1

ε/1

1/0 a/a

Alas, there is a glitch: this machine does not handle trailing zeros because of the copy state. Except for the 0 ⇝ 01
complication, all transitions to a final state must have a 1 in the upper track. This can be enforced with a little
surgery:

0 1 2 3

4

a/a

0/1

ε/1

0/0 1/1

1/1

0/0

Part B: Plus 3
This time, the rules are slightly more complicated, we have to distinguish based on the first two input bits.

0 ⇝ 1 1 1 ⇝ 0 0 1
0 0 x ⇝ 1 1 x
0 1 1k ⇝ 1 0 0k 1 0 1 1k 0 x ⇝ 1 0 0k 1 x
1 a 1k ⇝ 0 a 0k 1 1 a 1k 0 x ⇝ 0 a 0k 1 x

This leads to the following machine, which ignores the trailing zeros rule.

0 1 2

3 4

0/1 0/1

1/0

ε/01

ε/1a/a

1/0 a/a

More fumbling produces a machine fully compliant with N :

CDM HW 6 4 of 8



0 1 2 3

4 5 6

0/1

1/0

0/1

ε/1

1/0

1/1

ε/01

0/0

1/0
0/1

0/0 1/1
0/0

1/1

Part C: 3n + 2
In class we mentioned a transducer implementing the Collatz function. It is easy to modifiy this machine to get a
transducer T3x+1 that computes the arithmetical map x 7→ 3x + 1 for all x (adjust the even branch).

12

3 4 5

7 6

1/0

0/1

0/0 1/1

0/0 1/1 1/0

0/1

1/1

0/0
ε/0

ε/1

ε/1

Given T3x+1, one needs to figure out how to increase the output by 1. We have to follow the computations in T3x+1,
starting at the initial state, and change the output behavior accordingly. The difficulty is to propagate the carry
properly. With a bit of fumbling, this produces the following machine T3x+2:

CDM HW 6 5 of 8



1

2 3

4 5 6

7 8

7 8

0/0
1/1

0/1

ε/1

1/1

0/0

ε/0
1/0

0/0 1/1 1/0

0/1

1/1

0/0

ε/1 ε/0

ε/1

This is a bit messy, but careful inspection shows that we can merge states 2 and 5, as well as 3 and 6. This produces
a better machine T3x+2 that is actually less complicated than T3x+1.

1

2 3 4

6 5

0/0 1/1

0/0 1/1 1/0

0/1

1/1

0/0
ε/0

ε/1

ε/1

CDM HW 6 6 of 8



3. Reversibility of ECA (40)

Background
Suppose ρ : 23 → 2 is the local map of an elementary cellular automaton (i.e., a ternary Boolean function). We have
seen how to construct from ρ a synchronous transducer A_,x,y that checks whether a finite bit sequence x evolves to
y in one step under fixed boundary conditions. Naturally, there is a similar machine for cyclic boundary conditions,
though things are a bit messier than in the fixed case.

Reversibility of a cellular automaton is expressed by the first-order formula

inj ≡ ∀ x, y, z (x _ z ∧ y _ z ⇒ x = y)

It is slightly easier to work with irreversibility, expressed by the negation ninj = ¬inj.

Task

A. Construct a synchronous 2-track transducer B_ that checks whether a finite bit sequence x evolves to y in one
step under cyclic boundary conditions.

B. Then build a synchronous 3-track transducer A that accepts the language defined by the matrix of ninj.

C. What does A have to do with injectivity of the global map on 2n?

D. Explain how one can directly construct a 2-track transducer A′ that still can be used to check ninj. This machine
should be of the form A′ = A0 × U where U is the un-equal transducer on 2 tracks.

Comment
For part (A), nondeterminism is critical (see the construction for the fixed boundary condition case). To avoid a silly
edge case, let’s assume that all words are non-empty.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Reversibility of ECA
Part A: Cyclic Boundary
The states are of the form (xyz, st) ∈ 23 × 22 where s and t are used to nondeterministically guess the last and first
bit, respectively.

⊥ a/e−−→ stz, st e = ρ(s, t, z)

xyz, st
z/e−−→ yzu, st e = ρ(y, z, u)

xys, st
s/e−−→ ⊤ e = ρ(y, s, t)

Part B: 3-Track
We get a product machine

A = A_,x,z × A_,y,z × Ux,y

with attachments as indicated. Note that the standard A product machine construction will essentially produce 2
copies of A_,x,z × A_,y,z, joined by transitions that verify x ̸= y (with initial state in the first copy, and final state
in the second).

Part C: Length n

CDM HW 6 7 of 8



Clearly, A accepts some string of length n iff the global map fails to be injective on 2n. This can be tested for example
by computing the product between A and the “all strings of length n” machine (more algebraic solutions are better).

Part D: 2-Track
The standard decision procedure would eliminate the z track by removing the z-labels: we are guessing the z such
that x _ z and y _ z. This can be done by a constructing a product automaton A0 of the de Bruijn automaton in
class: states are 22 × 22 and transitions are

(a1a2, b1b2) a3:b3−−−→ (a2a3, b2b3)

provided that ρ(a1, a2, a3) = ρ(b1, b2, b3)
One can then use the standard un-equal construction, two copies of A0, to produce A.

CDM HW 6 8 of 8


