
15-354: CDM K. Sutner

Assignment 4 Due: Sep. 29, 2023, 24:00.

1. Primitive Words (30)

Background
Let w be a non-empty word. A word z is the root of w if w ∈ z⋆ but there is no shorter word with this property. A
word is primitive if it is its own root.
For example, ab is the root of abababab. The primitive words of length 3 over {a, b} are aab, aba, abb, baa, bab, bba.

Task

A. Show that any two non-empty words u, v that commute, uv = vu, have the same root.

B. Show that any two non-empty words u and v commute iff they have equal powers: uk = vℓ for positive k and l.

C. Show that a non-empty word w is primitive iff w2 = xwy implies that x = ε or y = ε.

D. Count the number of primitive words of length n over a k letter alphabet.

E. Show that the language of primitive words over an alphabet of size at least 2 is not regular.

F. As part of some algorithm it is necessary to store a few thousand binary words of length 20. Prof. Dr.
Wurzelbrunft suggests to speed things up by storing the roots of words, rather than the words directly. What
professional advice can you give Wurzelbrunft?

Comment
Möbius inversion might be helpful for part (D).
It is conjectured that primitive words are not even context-free, but that is currently an open problem. Extra credit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Primitive Words
Part A: Commutativity
By induction on |uv|.
For |uv| = 2 the claim is obvious, so assume |uv| > 2. Also assume without loss of generality (check that this is really
true!) |v| < |u|. But then uv = vu implies u = vu0 where |u0| < |u|. Note that u0v = vu0, so by induction we may
assume that for some w we have u0, v ∈ w⋆. Our claim follows.

Part B: Powers
Commuting words have the same root, so by part (A) our claim follows.
On the other hand, suppose uk = vℓ. WLOG u = vx. Then (vx)k = vℓ, hence also (xv)k = vℓ and thus (vx)k = (xv)k.
But then x and v commute, done by part (A).

Part C: Primitivity
If w fails to be primitive it is easy to violate the condition on the right hand side: let w = ur where r ≥ 2. Then
ww = u w ur−1, done.



So suppose w is primitive but ww = xwy where x, y ̸= ε. Then w = w−w+ = w+w− where 0 < |w−| = |x| < |w|. By
part (A) w is not primitive.

Part D: Root Count
Clearly any word w of length n > 0 is either primitive or can be written as w = ur for some r ≥ 2. Of course, r is
uniquely determined. But then

kn =
∑
d|n

π(d)

By Möbius inversion we get
π(n) =

∑
d|n

µ(d) kn/d.

where µ is the Möbius function. Good enough to compute π(n) for any reasonable value of n.

Part E: Irregular
Consider all strings of the form abiabj . The strings form a regular language L and a string in L is primitive iff i = j.
Suppose there is DFA recognizing the language P of primitive words. Then P ∩ L = { abiabi | i ≥ 0 } is also regular.
Letting i be the number of states in a DFA for this language easily produces a contradiction.

Part F: Wurzelbrunft
As is usually (though not always!) the case, Wurzelbrunft is clueless: the fraction of imprimitive binary words of
length 20 is about 0.999012, so only a handful of the “thousands” of words would be any shorter.
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2. Word Binomials (40)

Background
By a subsequence of a word v = v1v2 . . . vm we mean any word u = vi1vi2 . . . vir

where 1 ≤ i1 < i2 < . . . ir ≤ m is a
strictly increasing sequence of indices. Thus bbc and cab are subsequences of ababacaba but cbb is not.
Note that a specific word can occur multiple times as a subsequence of another. For example, aab appears 7 times in
ababacaba. We write (

v

u

)
= C(v, u) = number of occurrences of u as a subsequence of v.

The notation is justified since “word binomials” generalize ordinary binomial coefficients:
(

n
k

)
=

(
an

ak

)
. Note that

instances of u as a subsequence of v in general overlap, e.g., C(a3, a2) = 3.

Task
Let δa,b = 1 iff a = b, 0 otherwise, be the Kronecker delta; a, b ∈ Σ and u, v, ui, vi ∈ Σ⋆.

A. Show that (
va

ub

)
=

(
v

ub

)
+ δa,b

(
v

u

)
B. Show that (

v1v2

u

)
=

∑
u=u1u2

(
v1

u1

)(
v2

u2

)
C. Give an efficient algorithm to compute word binomials.

D. Give a simple description (in terms of union, concatenation and Kleene star) of the language

L = { v ∈ {a, b}⋆ | C(v, ab) = 3 }

E. Construct the minimal DFA for L by diagram chasing (aka doodling).

F. Generalize: given a word u and an integer r construct a DFA that accepts

L(u, r) = { v ∈ Σ⋆ | C(v, u) = r }

Is your machine always minimal?

Comment
For what it’s worth, here is a picture of the smallest possible DFA checking for 6 subwords aab. Make sure you
understand how this machine works. Your construction will probably produce a much larger machine–but one that is
also much easier to describe than this minimal one.
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b
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a
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Word Binomials
Part A: Recursion
For ub to be a subsequence of va it must either be a subsequence of v alone or u must be a subsequence of v provided
that a = b.

Part B: Summation
For u be subsequence of v1v2 there has to be a factorization u = u1u2 such that ui is a subsequence of vi.

Part C: Algorithm
We can use the recursion in part (A) to compute word binomials by dynamic programming. To this end, let n = |x|
and m = |y| (we may assume m ≤ n).
We construct an (n + 1)(m + 1) table of integers T such that

T (i, j) =
(

x1 . . . xi

y1 . . . yj

)
for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Thus T (n, m) =

(
x
y

)
is desired result. Initialize T (i, 0) = 1, T (0, j) = 0 for j > 0 and use

T (i, j) = T (i − 1, j) + δxi,yj
T (i − 1, j − 1).

to fill in the table. The running time is clearly O(nm).

Part D: Sample Language
It is not hard to see that

(
v
ab

)
= 3 implies that

(
x
ab

)
= 3 for all x ∈ b⋆va⋆, so we only need to look for words of the

form v = aub. A little thought shows that the only choices are v = aaab, abab, abbb.
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Thus L = b⋆{aaab, abab, abbb}a⋆.

Part E: Minimal DFA for Sample
The obvious DFA checks for those three words and ignores initial b’s and final a’s:

The DFA is minimal since the distance between the initial and final state cannot be less than 4 and we must have
δ(q0, aa) ̸= δ(q0, ab).

Part F: General DFA
The idea is to use part (A). Let n = |u| and write u(i) = u1 . . . ui for the prefix of u of length i. We use as state set

Q = [0, r + 1]n,

the initial state is q0 = (0, . . . , 0) and the final states are of the form (. . . , r). Define the transition function by

δ(p, a)i = max(pi + ∆a,vipi−1, r + 1)

where p0 = 0 and ∆ denotes the Kronecker delta.
An easy induction on x then shows that

δ(q0, x) =
((

x

u(1)

)
,

(
x

u(2)

)
, . . . ,

(
x

u(n)

))
Hence the automaton works properly.
In a serious implementation one would only construct the accessible part of this machine, starting at q0 and applying
δ to obtain the appropriate closure.
Even the accessible part is in general not minimal. For example, for the sample language from above we get a DFA
with 21 states (rather than the potential maximum of 25). But the minimal DFA has only 7 states in this case.
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3. Semilinear Counting (30)

Background
It is often stated that “finite state machines cannot count.” To a point, this is correct, but there are special cases
when a finite state machine is perfectly capable of counting. Here are some fairly involved examples of counting in
zero space.

Recall that a set C ⊆ N is semilinear if it is a finite union of sets of the form t + pN, where t, p ∈ N (for p = 0 this is
just {t}) (transient and period). Let LC = { 0ℓ | ℓ ∈ C } ⊆ 0⋆.
Let U ⊆ Σ+ be a regular language. A U -factorization of x ∈ Σ+ is a sequence u1, . . . , uℓ of words in U such that
x = u1 . . . uℓ, ℓ ≥ 1. Write fac(x, U) for the set of all U -factorizations of x and define

L(U, C) = { x | |fac(x, U)| ∈ C }

Thus, L(U, C) collects all words that have exactly ℓ many U -factorizations where ℓ ∈ C.

Task

A. Construct the minimal automaton for LC .

B. Conclude that the semilinear sets form a Boolean algebra.

C. Show that L(U, C) is regular.

Comment For (A), make sure your automaton is really minimal. For the last part, you probably want to use a
pebbling argument and closure properties. Try C = {3} first, then C = evens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Semilinear Counting
Part A: Minimal
Lasso.

Part B: Boolean
Follows directly from (A) and the fact that regular languages form a Boolean algebra.

Part C: Factorizations
Since C is semilinear and regular languages are closed under union, it suffices to handle the special case C = t + pN.
We can also exclude C = ∅ and C = N (why?).
Suppose A is a DFA for U . First assume p = 0, so we need to check for t factorizations. Place a pebble on the initial
state of A and move as usual until a pebble arrives at a final state; in this case, place another pebble on the initial
state. The machine accepts whenever the total number of pebbles on the final states is t. Here is the trick: if the
number of pebbles on a single state grows beyond t, truncate it to t + 1, indicating failure. This guarantees finitely
many pebble configurations and thus produces a finite state machine.

If p > 0, we count “modulo t and p” in the sense that we keep up to t + p − 1 pebbles at a single state; if we reach
t + p, we reset to t. Essentially, we are counting on the lasso with transient t and period p. Again we get a finite state
machine.
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