
15-354: CDM K. Sutner

Assignment 3 Due: Sep. 22, 2023, 24:00.

1. Semidecidable Sets and Computable Functions (40)

Background
We defined semidecidable sets as a generalization of decidable sets: on a Yes-instance the “semidecision algorithm”
terminates, but on a No-instance it keeps running forever. There are many alternative characterizations that describe
more directly the relationship between semidecidable sets and partial computable functions.
By an enumeration of A ⊆ N we mean a partial function f : N ↛ N so that the range of f is A. For simplicity, we
will assume that the support of f is either all of N or some initial segment {0, 1, . . . , n − 1}. So

A = { f(i) | i < N } = f(0), f(1), f(2), . . .

where N = n or N = ω. Note that we allow n = 0 corresponding to A = ∅. An enumeration is repetition-free if f is
injective. A set is recursively enumerable (r.e.) if it can be enumerated by a computable function f .

Task
Assume that A ⊆ N. Show the following.

A. All finite sets are recursively enumerable.

B. The set of primes is recursively enumerable.

C. The set of prime twins is recursively enumerable.

D. A is semidecidable iff it is recursively enumerable.

E. A is semidecidable iff it is recursively enumerable with a repetition-free enumeration.

F. Suppose A is infinite. Then A is decidable iff it is recursively enumerable with a strictly increasing enumeration.

Comment
Don’t try to argue formally in terms of register machines, just use computability in the intuitive sense, much the way
you would describe a solution to a problem in an algorithms class.
Note that it is currently unknown whether there are infinitely many prime twins—but that does not affect part (C).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Semidecidable Sets and Computable Functions
Part A: Finite
We can simply hardwire the finite set A into the algorithm that “computes” the enumeration (computes here just
means: performs a table-lookup). More precisely, there is a, say, strictly increasing list a0, a1, . . . , an−1 of the elements
of A, where n is the cardinality of A. The enumeration maps i 7→ ai for i < n, and is undefined otherwise.

Part B: Primes
It is not hard to see that primality is decidable (in fact, primitive recursive and, as we now know, polynomial time)
and that the function nextprime is computable. But then we can compute the nth prime as follows:



p = 2;
for( i = 0; i < n; i++ )

p = nextprime(p);
return p;

We assume 0-indexing here.

Part C: Prime Twins
Let’s call the last program nthprime: on input n return the nth prime. Also assume we have a program prime that
tests primality. The following (atrocious) program returns the nth prime twin (first component only, if you want both
use a pairing function).

c = 0;
k = 1;
while( c < n )

while( !prime(nthprime(k)+2) ) k++;
c++;

return nthprime(k);

Sadly, at the time of this writing, no one knows whether this program halts for all n.

Part D: Enumeration
We may safely assume that A is infinite.
If A is r.e., to semidecide membership of x ∈ A, we can simply “run” the enumeration: if x appears, halt, otherwise
keep running forever. Since f is computable, this is a semidecision procedure.
For the opposite direction, suppose A is a semidecision algorithm for A. We orgnize the generating algorithm in stages
s (there is an outer loop that executes all stages one after the other). At stage s, we run A on all x < s for at most s
steps. If A converges on z, we add z to the list of already enumerated elements.
As written, this method repeats each element of A infinitely often, but that is allowed according to our definition.

Part E: Repetition-Free Enumeration
We can use exactly the same argument as in the last part, except that we keep track of a list all already discovered
elements of A. Whenever a potentially new element z pops up, we first check against the list.

Part F: Monotonic Enumeration
Now suppose A is decidable. Again think of the enumeration as a list, initially empty, and proceed in stages. At stage
s we run the decision algorithm for A on s. If the algorithm returns Yes we append s to the list, otherwise we do
nothing (recall that the decision algorithm for A must halt on any input).
For the opposite direction suppose as is a monotonic enumeration of A. Given x, to decide membership in A, find the
unique s such that either x = as or as < x < as+1: this can be done by a brute-force search (which must terminate!).
Return Yes or No accordingly.
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2. The DASZ Operator (30)

Background
For this problem, consider non-decreasing lists of positive integers A = (a1, a2, . . . , aw). We transform any such list
into a new one according to the following simple recipe:

• Subtract 1 from all elements.

• Append the length of the list as a new element.

• Sort the list.

• Remove all 0 entries.

We will call this the DASZ operation (decrement, append, sort, kill zero) and write D(A) for the new list (note that
D really is a function). For example, D(1, 3, 5) = (2, 3, 4), D(4) = (1, 3) and D(1, 1, 1, 1) = (4).
A single application of D is not too fascinating, but things become interesting when we iterate the operation: as it
turns out, Dt(A) always has a finite transient (and period), no matter how A is chosen. For example, the transient
and period of (1, 1, 1, 1, 1) are both 3:

0 1 1 1 1 1
1 5
2 1 4

transient 3 2 3
4 1 2 2
5 1 1 3

period 6 2 3

Here is a plot of the transients and periods of all starting lists A = (n) for n ≤ 50.
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Note the fixed points D(A) = A, the few red dots at the bottom.

Task

A. Show that all transients must be finite.

B. Characterize all the fixed points of the DASZ operation.

C. Determine which initial lists A = (n) lead to a fixed point.
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Solution: DASZ Operator
Part A: Repeat
The key insight is that for any list L = (a1, a2, . . . , aw) the application of D does not affect the weight of L, defined as
w(L) =

∑
i ai. Hence, the weight is an invariant with respect to our operation. Since the entries ai are non-negative

there are only finitely many lists of a given weight, hence repeated application of D must ultimately result in a cycle:
Dt+p(L) = Dt(L) for some t ≥ 0, p > 0 (the transient and period).

Part B: Fixed Points
Consider a list L = (a1, a2, . . . , an) assumed to be sorted in non-decreasing order. Suppose L is a fixed point. Since
the length of D(L) is n − 1 + k where k is maximal such that ak = 1 we must have 1 = a1 < a2. An easy induction
then shows that ai = i. It is clear that all lists (1, 2, 3, . . . , n − 1, n) are fixed points, done.

Part C: To FPs
Since application of D does not affect weight, a fixed point of width m must have weight w = m(m + 1)/2 = Tm, the
mth triangular number, for m > 0. Hence we only have to consider numbers 1, 3, 6, 10, 15, 21, . . . as starting points
(the red dots at the bottom in the picture). A little experimentation leads to the following:
Claim: All the lists (Tm) evolve to their corresponding fixed points (1, 2, . . . , m) in Tm−1 steps.
This is intuitively clear from a table describing the orbit of, say, L6 = (21).

0 21
1 1 20
2 2 19
3 1 2 18
4 1 3 17
5 2 3 16
6 1 2 3 15
7 1 2 4 14
8 1 3 4 13
9 2 3 4 12

10 1 2 3 4 11
11 1 2 3 5 10
12 1 2 4 5 9
13 1 3 4 5 8
14 2 3 4 5 7
15 1 2 3 4 5 6

For an actual proof start with a warm-up exercise: let’s consider lists of the form Lk = (1, 2, . . . , k, ∞) where ∞ stands
for a very large number, assuming ∞ − 1 = ∞.

Claim 1: Lk evolves to Lk+1 in k + 1 steps.
To see this, show by induction on 0 ≤ s ≤ k that

Ds(Lk) = (1 + δ1,s, 2 + δ2,s, . . . , k + δk,s, ∞)

where δi,s = 0 if i + s ≤ k and 1 otherwise. Hence

Dk(Lk) = (2, 3, . . . , k, k + 1, ∞)

and in one more step we get Lk+1.
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Note that ∞ can be replaced by any number larger than all the other list elements that occur in the orbit of Lk.
We write Lk(x) for the list obtained by replacing ∞ by x in Lk. It is immediate from claim 1 that Lk(x) evolves to
Lk+1(x − k − 1) in k + 1 steps. A simple induction using claim 1 then shows that

Claim 2: L0(Tm) evolves to Lk(Tm − Tk) in Tk steps.

But then the main claim follows: L0(Tm) is none other than the initial configuration (Tm).
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3. Speeding Up Iteration (30)

Background
The method of fast exponentiation can sometimes be used to speed-up the computation of f t(a) for some endofunction
f : A → A . Here is an example, and a limitation to this speed-up effect.

For n ≥ 1 let A = 2n×n be the set of all n × n Boolean matrices. Define the circulant matrix C by

C(i, j) =
{

1 if j = i ± 1
0 otherwise.

Here the indices are supposed to wrap around, so that, say, C8 has the form

Lastly, define f : A → A by f(X) = C · X + X · C where for the matrix multiplication we interpret addition as logical
exclusive or and multiplication as logical and. Here is the effect of applying f t to the 13 × 13 matrix with a single 1
in the center, rest all 0’s, for t = 0, 1, . . . , 5.

Note how, at times 2 and 3, 4 and 5, the pictures contain 4 copies of the pictures at times 0 and 1. Similarly, the
effect of f t on the 31 × 31 single-point matrix, for times t = 0, 10, 20, . . . , 90.

The patterns are rather surprising, you might want to write a program that the produces the whole orbit (and try
different matrix sizes).
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Task

A. Describe the effect of f on X ∈ A in geometric terms.

B. Show how to compute f t(X) for X ∈ A in time O(pol(n) log t) where pol is a low-degree polynomial depending
only on n. Make sure to explain the degree of pol.
Hint: express f as a single matrix multiplication. You might want to look up Kronecker product.

C. Show that P = NP if exponential speed-up is always possible.

Comment
For part (C), find a way to determine satisfiability of a Boolen formula ϕ(x1, . . . , xn) by iterating a function f defined
essentially on 2n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Speeding Up Iteration
Part A: Xor
Note that the effect of X · C is to rotate the rows of X left and right, and C · X similarly rotates the columns. So a
single bit spreads out to its four neighbors (things wrap around, we are dealing with a torus rather than a square).
Since we are using logical ⊕ and ∧, the algebra takes place in Z/(2), the two-element field; A is a vector space of
dimension n2 over this field, and f is a linear map. Thus, f can be represented by a n2 × n2 matrix M : f(X) = M · X
(think of X as a column vector).
But then we can use fast exponentiation to compute M t in Ø(log t) matrix multiplications. A single one of these
multiplications is Ø(n6) using brute force (though speedups are possible using fast matrix multiplication).

Incidentally, there is another way to tackle this problem: try find something like a closed form solution to the problem
of computing the bit f t(X)(i, j). This involves quite a bit of messy algebra involving binomials, but can also be used
to speed-up the computation.

Part B: No Speed-Up
Define A = 2n ∪ {⊥} where ⊥ is some new element. Let φ(x1, . . . , xn) be a Boolean formula and define f : A → A as
follows: f(⊥) = ⊥ and

f(x) =
{

⊥ if x satisfies φ
x + 1 otherwise.

Here x + 1 is meant as: increment the corresponding n-bit number in binary.
But then f is polynomial time computable and φ is satisfiable iff f2n(0) = ⊥. Speed-up would get us down to
Ø(pol(n)n), collapsing NP to P.
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