15-354: CDM

1. Semidecidable Sets and Computable Functions (40)

Background

We defined semidecidable sets as a generalization of decidable sets: on a Yes-instance the "semidecision algorithm" terminates, but on a No-instance it keeps running forever. There are many alternative characterizations that describe more directly the relationship between semidecidable sets and partial computable functions.

By an enumeration of $A \subseteq \mathbb{N}$ we mean a partial function $f : \mathbb{N} \to \mathbb{N}$ so that the range of f is A. For simplicity, we will assume that the support of f is either all of \mathbb{N} or some initial segment $\{0, 1, \ldots, n-1\}$. So

$$A = \{ f(i) \mid i < N \} = f(0), f(1), f(2), \dots$$

where N = n or $N = \omega$. Note that we allow n = 0 corresponding to $A = \emptyset$. An enumeration is repetition-free if f is injective. A set is recursively enumerable (r.e.) if it can be enumerated by a computable function f.

Task

Assume that $A \subseteq \mathbb{N}$. Show the following.

- A. All finite sets are recursively enumerable.
- B. The set of primes is recursively enumerable.
- C. The set of prime twins is recursively enumerable.
- D. A is semidecidable iff it is recursively enumerable.
- E. A is semidecidable iff it is recursively enumerable with a repetition-free enumeration.
- F. Suppose A is infinite. Then A is decidable iff it is recursively enumerable with a strictly increasing enumeration.

Comment

Don't try to argue formally in terms of register machines, just use computability in the intuitive sense, much the way you would describe a solution to a problem in an algorithms class.

Note that it is currently unknown whether there are infinitely many prime twins—but that does not affect part (C).

Solution: Semidecidable Sets and Computable Functions

Part A: Finite

We can simply hardwire the finite set A into the algorithm that "computes" the enumeration (computes here just means: performs a table-lookup). More precisely, there is a, say, strictly increasing list $a_0, a_1, \ldots, a_{n-1}$ of the elements of A, where n is the cardinality of A. The enumeration maps $i \mapsto a_i$ for i < n, and is undefined otherwise.

Part B: Primes

It is not hard to see that primality is decidable (in fact, primitive recursive and, as we now know, polynomial time) and that the function **nextprime** is computable. But then we can compute the *n*th prime as follows:

```
p = 2;
for( i = 0; i < n; i++ )
        p = nextprime(p);
return p;
```

We assume 0-indexing here.

Part C: Prime Twins

Let's call the last program nthprime: on input *n* return the *n*th prime. Also assume we have a program prime that tests primality. The following (atrocious) program returns the *n*th prime twin (first component only, if you want both use a pairing function).

```
c = 0;
k = 1;
while( c < n )
    while( !prime(nthprime(k)+2) ) k++;
    c++;
return nthprime(k);
```

Sadly, at the time of this writing, no one knows whether this program halts for all n.

Part D: Enumeration

We may safely assume that A is infinite.

If A is r.e., to semidecide membership of $x \in A$, we can simply "run" the enumeration: if x appears, halt, otherwise keep running forever. Since f is computable, this is a semidecision procedure.

For the opposite direction, suppose \mathcal{A} is a semidecision algorithm for A. We orgnize the generating algorithm in stages s (there is an outer loop that executes all stages one after the other). At stage s, we run \mathcal{A} on all x < s for at most s steps. If \mathcal{A} converges on z, we add z to the list of already enumerated elements.

As written, this method repeats each element of A infinitely often, but that is allowed according to our definition.

Part E: Repetition-Free Enumeration

We can use exactly the same argument as in the last part, except that we keep track of a list all already discovered elements of A. Whenever a potentially new element z pops up, we first check against the list.

Part F: Monotonic Enumeration

Now suppose A is decidable. Again think of the enumeration as a list, initially empty, and proceed in stages. At stage s we run the decision algorithm for A on s. If the algorithm returns Yes we append s to the list, otherwise we do nothing (recall that the decision algorithm for A must halt on any input).

For the opposite direction suppose a_s is a monotonic enumeration of A. Given x, to decide membership in A, find the unique s such that either $x = a_s$ or $a_s < x < a_{s+1}$: this can be done by a brute-force search (which must terminate!). Return Yes or No accordingly.

2. The DASZ Operator (30)

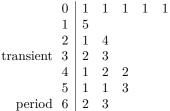
Background

For this problem, consider non-decreasing lists of positive integers $A = (a_1, a_2, \ldots, a_w)$. We transform any such list into a new one according to the following simple recipe:

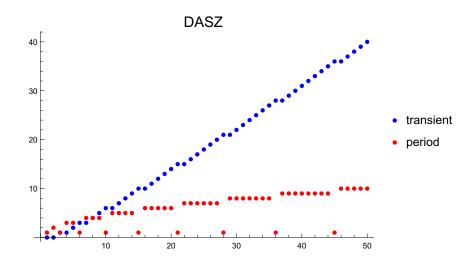
- Subtract 1 from all elements.
- Append the length of the list as a new element.
- Sort the list.
- Remove all 0 entries.

We will call this the DASZ operation (decrement, append, sort, kill zero) and write D(A) for the new list (note that D really is a function). For example, D(1,3,5) = (2,3,4), D(4) = (1,3) and D(1,1,1,1) = (4).

A single application of D is not too fascinating, but things become interesting when we iterate the operation: as it turns out, $D^t(A)$ always has a finite transient (and period), no matter how A is chosen. For example, the transient and period of (1, 1, 1, 1, 1) are both 3:



Here is a plot of the transients and periods of all starting lists A = (n) for $n \leq 50$.



Note the fixed points D(A) = A, the few red dots at the bottom.

Task

- A. Show that all transients must be finite.
- B. Characterize all the fixed points of the DASZ operation.
- C. Determine which initial lists A = (n) lead to a fixed point.

Solution: DASZ Operator

Part A: Repeat

The key insight is that for any list $L = (a_1, a_2, \ldots, a_w)$ the application of D does not affect the weight of L, defined as $w(L) = \sum_i a_i$. Hence, the weight is an invariant with respect to our operation. Since the entries a_i are non-negative there are only finitely many lists of a given weight, hence repeated application of D must ultimately result in a cycle: $D^{t+p}(L) = D^t(L)$ for some $t \ge 0$, p > 0 (the transient and period).

Part B: Fixed Points

Consider a list $L = (a_1, a_2, ..., a_n)$ assumed to be sorted in non-decreasing order. Suppose L is a fixed point. Since the length of D(L) is n - 1 + k where k is maximal such that $a_k = 1$ we must have $1 = a_1 < a_2$. An easy induction then shows that $a_i = i$. It is clear that all lists (1, 2, 3, ..., n - 1, n) are fixed points, done.

Part C: To FPs

Since application of D does not affect weight, a fixed point of width m must have weight $w = m(m+1)/2 = T_m$, the mth triangular number, for m > 0. Hence we only have to consider numbers 1, 3, 6, 10, 15, 21, ... as starting points (the red dots at the bottom in the picture). A little experimentation leads to the following:

Claim: All the lists (T_m) evolve to their corresponding fixed points $(1, 2, \ldots, m)$ in T_{m-1} steps.

This is intuitively clear from a table describing the orbit of, say, $L_6 = (21)$.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	21				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	20			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	19			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		2	18		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1		17		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		3	16		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1		3	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	1	2	4	14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		3	4	13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	3	4	12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1	2	3	4	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	1	2	3	5	10
$14 \ 2 \ 3 \ 4 \ 5 \ 7$		1	2	4	5	9
$14 \ 2 \ 3 \ 4 \ 5 \ 7$		1	3	4	5	8
	14	2	3	4	5	$\overline{7}$
	15	1	2	3	4	5

For an actual proof start with a warm-up exercise: let's consider lists of the form $L_k = (1, 2, ..., k, \infty)$ where ∞ stands for a very large number, assuming $\infty - 1 = \infty$.

6

Claim 1: L_k evolves to L_{k+1} in k+1 steps.

To see this, show by induction on $0 \le s \le k$ that

$$D^{s}(L_{k}) = (1 + \delta_{1,s}, 2 + \delta_{2,s}, \dots, k + \delta_{k,s}, \infty)$$

where $\delta_{i,s} = 0$ if $i + s \leq k$ and 1 otherwise. Hence

$$D^{k}(L_{k}) = (2, 3, \dots, k, k+1, \infty)$$

and in one more step we get L_{k+1} .

Note that ∞ can be replaced by any number larger than all the other list elements that occur in the orbit of L_k . We write $L_k(x)$ for the list obtained by replacing ∞ by x in L_k . It is immediate from claim 1 that $L_k(x)$ evolves to $L_{k+1}(x-k-1)$ in k+1 steps. A simple induction using claim 1 then shows that

Claim 2: $L_0(T_m)$ evolves to $L_k(T_m - T_k)$ in T_k steps.

But then the main claim follows: $L_0(T_m)$ is none other than the initial configuration (T_m) .

3. Speeding Up Iteration (30)

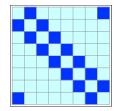
Background

The method of fast exponentiation can sometimes be used to speed-up the computation of $f^t(a)$ for some endofunction $f: A \to A$. Here is an example, and a limitation to this speed-up effect.

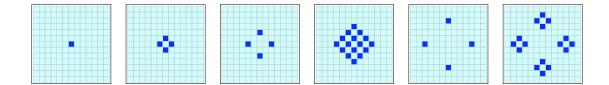
For $n \ge 1$ let $A = 2^{n \times n}$ be the set of all $n \times n$ Boolean matrices. Define the circulant matrix C by

$$C(i,j) = \begin{cases} 1 & \text{if } j = i \pm 1\\ 0 & \text{otherwise.} \end{cases}$$

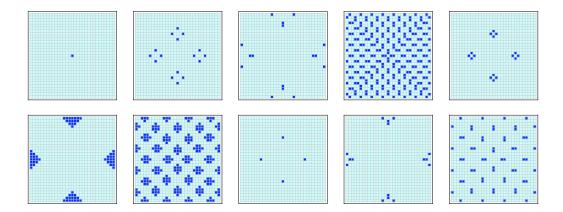
Here the indices are supposed to wrap around, so that, say, C_8 has the form



Lastly, define $f : A \to A$ by $f(X) = C \cdot X + X \cdot C$ where for the matrix multiplication we interpret addition as logical *exclusive or* and multiplication as logical *and*. Here is the effect of applying f^t to the 13×13 matrix with a single 1 in the center, rest all 0's, for t = 0, 1, ..., 5.



Note how, at times 2 and 3, 4 and 5, the pictures contain 4 copies of the pictures at times 0 and 1. Similarly, the effect of f^t on the 31×31 single-point matrix, for times $t = 0, 10, 20, \ldots, 90$.



The patterns are rather surprising, you might want to write a program that the produces the whole orbit (and try different matrix sizes).

Task

- A. Describe the effect of f on $X \in A$ in geometric terms.
- B. Show how to compute $f^t(X)$ for $X \in A$ in time $O(pol(n) \log t)$ where pol is a low-degree polynomial depending only on n. Make sure to explain the degree of pol.

Hint: express f as a single matrix multiplication. You might want to look up Kronecker product.

C. Show that $\mathbb{P} = \mathbb{NP}$ if exponential speed-up is always possible.

Comment

For part (C), find a way to determine satisfiability of a Boolen formula $\phi(x_1, \ldots, x_n)$ by iterating a function f defined essentially on 2^n .

.....

Solution: Speeding Up Iteration

Part A: Xor

Note that the effect of $X \cdot C$ is to rotate the rows of X left and right, and $C \cdot X$ similarly rotates the columns. So a single bit spreads out to its four neighbors (things wrap around, we are dealing with a torus rather than a square).

Since we are using logical \oplus and \wedge , the algebra takes place in $\mathbb{Z}/(2)$, the two-element field; A is a vector space of dimension n^2 over this field, and f is a linear map. Thus, f can be represented by a $n^2 \times n^2$ matrix M: $f(X) = M \cdot X$ (think of X as a column vector).

But then we can use fast exponentiation to compute M^t in $\mathcal{O}(\log t)$ matrix multiplications. A single one of these multiplications is $\mathcal{O}(n^6)$ using brute force (though speedups are possible using fast matrix multiplication).

Incidentally, there is another way to tackle this problem: try find something like a closed form solution to the problem of computing the bit $f^t(X)(i, j)$. This involves quite a bit of messy algebra involving binomials, but can also be used to speed-up the computation.

Part B: No Speed-Up

Define $A = 2^n \cup \{\bot\}$ where \bot is some new element. Let $\varphi(x_1, \ldots, x_n)$ be a Boolean formula and define $f : A \to A$ as follows: $f(\bot) = \bot$ and

$$f(\boldsymbol{x}) = \begin{cases} \perp & \text{if } \boldsymbol{x} \text{ satisfies } \varphi \\ \boldsymbol{x} + 1 & \text{otherwise.} \end{cases}$$

Here x + 1 is meant as: increment the corresponding *n*-bit number in binary.

But then f is polynomial time computable and φ is satisfiable iff $f^{2^n}(\mathbf{0}) = \bot$. Speed-up would get us down to $\mathcal{O}(\mathsf{pol}(n)n)$, collapsing \mathbb{NP} to \mathbb{P} .