
15-354: CDM K. Sutner

Assignment 2 Due: Sep. 15, 2023.

1. Loopy Loops (40)

Background
Consider a small programming language LOOP with the following syntax:

constants 0 ∈ N
variables x, y, z, . . . ranging over N
operations increment x++
assignments x = 0 and x = y
sequential composition P ; Q
control do x : P od

The semantics are obvious, except for the loop construct: do x : P od is intended to mean: “Let n be the value of
x before the loop is entered; then execute P exactly n times.” Thus, the loop terminates after n rounds even if P
changes the value of x. For example, the following LOOP program computes addition:

// add : x, y --> z
z = x;
do y :

z++;
od

Here x and y are input variables, and the result is in z. We assume that all non-input variables are initialized to 0.
So, we have a notion of a LOOP-computable function.

Task

A. Show how to implement multiplication and the predecessor function as LOOP programs.

B. What function does the following loop program compute?
// mystery : x --> x

do x:
do x: x++ od

od

C. Show that every primitive recursive function is LOOP-computable.

D. Show that every LOOP-computable function is primitive recursive.



2. Register Machines and Sequence Numbers (30)

Background
Recall the coding function for sequences of natural numbers introduced in class:

π(x, y) = 2x(2y + 1)
⟨nil⟩ = 0

⟨a1, . . . , an⟩ = π(a1, ⟨a2, . . . , an⟩)

Task

A. Give a simple bound on ⟨a1, . . . , an⟩ in terms of n and max ai.

B. Construct a register machine program digcnt that, on input x, returns the number of binary digits of x (no
leading zeros).

C. Construct a register machine program append that, on input ⟨a1, . . . , an⟩ and b, returns ⟨a1, . . . , an, b⟩.

D. Roughly, what is the running time of your programs?

Comment
Make sure to give a detailed explanation of how your programs work, plain RMP code translates into 0 credit. A
flowgraph might be a good idea, too.
For the running time do not try to come up with a precise answer, just order of magnitude.

CDM HW 2 2 of 3



3. The Busy Beaver Function (RM) (30)

Background
The Busy Beaver function β is a famous example of a function that is just barely non-computable. For our purposes,
let’s define β(n) as follows. Consider all register machines P with n instructions and no input (so all registers are
initially 0). Executing such a machine will either produce a diverging computation or some output xP in register R0.
Define β(n) to be the maximum of all xP as P ranges over n-instruction programs that converge.
It is intuitively clear that β is not computable: we have no way of eliminating the non-halting programs from the
competition. Alas, it’s not so easy to come up with a clean proof. One line of reasoning is somewhat similar to the
argument that shows that the Ackermann function is not primitive recursive: one shows that β grows faster than any
computable function.

Task

A. Show that, for any natural number m, there is a register machine without input that outputs m and uses only
O(log m) instructions.

B. Assume f : N → N is a strictly increasing computable function. Show that for some sufficiently large x we must
have f(x) < β(x).

C. Conclude that β is not computable.

D. Prof. Dr. Blasius Wurzelbrunft sells a device called HaltingBlackBoxTM that allegedly solves the Halting Problem
for register machines. Explain how Wurzelbrunft’s gizmo could be used to compute β.

Comment
The bound in part (A) is far from tight in special cases: some numbers m have much shorter programs: think about
22k . But, in general log m is impossible to beat (Kolmogorov-Chaitin program-size complexity). Part (D) says that β
is K-computable.

CDM HW 2 3 of 3


