15-354: CDM

Assignment 2

1. Loopy Loops (40)

Background

Consider a small programming language LOOP with the following syntax:

constants	$0 \in \mathbb{N}$
variables	x, y, z, \ldots ranging over \mathbb{N}
operations	increment $x++$
assignments	x = 0 and $x = y$
sequential composition	P;Q
control	do $x:P$ od

The semantics are obvious, except for the loop construct: do x : P od is intended to mean: "Let n be the value of x before the loop is entered; then execute P exactly n times." Thus, the loop terminates after n rounds even if P changes the value of x. For example, the following LOOP program computes addition:

Here x and y are input variables, and the result is in z. We assume that all non-input variables are initialized to 0. So, we have a notion of a LOOP-computable function.

Task

- A. Show how to implement multiplication and the predecessor function as LOOP programs.
- B. What function does the following loop program compute?

```
// mystery : x --> x
do x:
    do x: x++ od
    od
```

- C. Show that every primitive recursive function is LOOP-computable.
- D. Show that every LOOP-computable function is primitive recursive.

2. Register Machines and Sequence Numbers (30)

Background

Recall the coding function for sequences of natural numbers introduced in class:

$$\begin{aligned} \pi(x,y) &= 2^x(2y+1)\\ \langle \mathsf{nil}\rangle &= 0\\ \langle a_1,\ldots,a_n\rangle &= \pi(a_1,\langle a_2,\ldots,a_n\rangle) \end{aligned}$$

Task

- A. Give a simple bound on $\langle a_1, \ldots, a_n \rangle$ in terms of n and max a_i .
- B. Construct a register machine program digcnt that, on input x, returns the number of binary digits of x (no leading zeros).
- C. Construct a register machine program append that, on input $\langle a_1, \ldots, a_n \rangle$ and b, returns $\langle a_1, \ldots, a_n, b \rangle$.
- D. Roughly, what is the running time of your programs?

Comment

Make sure to give a detailed explanation of how your programs work, plain RMP code translates into 0 credit. A flowgraph might be a good idea, too.

For the running time do not try to come up with a precise answer, just order of magnitude.

3. The Busy Beaver Function (RM) (30)

Background

The Busy Beaver function β is a famous example of a function that is just barely non-computable. For our purposes, let's define $\beta(n)$ as follows. Consider all register machines P with n instructions and no input (so all registers are initially 0). Executing such a machine will either produce a diverging computation or some output x_P in register R_0 . Define $\beta(n)$ to be the maximum of all x_P as P ranges over n-instruction programs that converge.

It is intuitively clear that β is not computable: we have no way of eliminating the non-halting programs from the competition. Alas, it's not so easy to come up with a clean proof. One line of reasoning is somewhat similar to the argument that shows that the Ackermann function is not primitive recursive: one shows that β grows faster than any computable function.

Task

- A. Show that, for any natural number m, there is a register machine without input that outputs m and uses only $O(\log m)$ instructions.
- B. Assume $f : \mathbb{N} \to \mathbb{N}$ is a strictly increasing computable function. Show that for some sufficiently large x we must have $f(x) < \beta(x)$.
- C. Conclude that β is not computable.
- D. Prof. Dr. Blasius Wurzelbrunft sells a device called HaltingBlackBoxTM that allegedly solves the Halting Problem for register machines. Explain how Wurzelbrunft's gizmo could be used to compute β .

Comment

The bound in part (A) is far from tight in special cases: some numbers m have much shorter programs: think about 2^{2^k} . But, in general log m is impossible to beat (Kolmogorov-Chaitin program-size complexity). Part (D) says that β is K-computable.