
Computation and
Discrete Mathematics

Klaus Sutner
Carnegie Mellon University
Fall 2023

1 Administrivia

2 CDM, the Idea

3 Example: Equivalence

Dramatis Personae 2

Prof:
Klaus Sutner sutner@cs.cmu.edu

TAs:
Joey Yu joeyyu@cmu.edu

Course secretary:
Rosie Battenfelder rosemary@cs.cmu.edu

sutner@cs.cmu.edu
joeyyu@cmu.edu
rosemary@cs.cmu.edu

Website and Communication 3

Course Website: CDM

Communication: Ed

Syllabus: Syllabus

Make sure to read the course syllabus carefully, I will assume you are
familiar with all the rules and policies spelled out there. If you feel the
instructions are not clear enough, talk to me or post on Ed.

http://www.cs.cmu.edu/~cdm/
https://edstem.org/us/courses/42116/discussion/
http://www.cs.cmu.edu/~cdm/pdf/syllabus-cdm-f23.pdf

Prerequisites 4

There is only one official prerequisite: 15-251.

You should interpret this as meaning: “utterly comfortable with all the
251 material, and with math in general.”

There is a lot of material posted on the website, if you need to brush up
on some particular topic (say, Turing machines or coding functions) take
a look at this stuff. And ask if there questions.

1 Administrivia

2 CDM, the Idea

3 Example: Equivalence

The Culprit 6

Bourbaki, Charles Denis Sauter

Bourbaki, Nicolas 7

Cartan, Dieudonné, Weil, Chevalley et al., 1935

The Beginning 8

Supposedly, this all started when Henri Cartan was badgering André Weil
to produce a text from which would allow him to teach Stokes’ theorem
completely rigorously†.

Thousands of pages were written, but the goal was never accomplished.
And somehow the scope shifted to “all of mathematics,” rather than just
poor Stokes’ theorem.

Rigor is certainly an invaluable goal, but, from a modern perspective,
Bourbaki misses the mark, by a few light-years. The exposition is
pseudo-formal at best, it uses a dubious logical foundation and there
certainly is no proof checker in sight anywhere.

†According to S. S. Chern, Stokes’ theorem is the only theorem in analysis.

Éléments de Mathématique 9

I Set theory
II Algebra

III Topology
IV Functions of one real variable
V Topological vector spaces
VI Integration

VII Lie groups and Lie Algebras
VIII Commutative algebra

IX Spectral Theory
X Differential and Analytic Manifolds
XI Algebraic Topology

This one from 1960 is actu-
ally quite readable.

The others, not so much.

Some Bourbaki Idiosyncrasies 11

Presentation strictly linear, no external references.

Problem solving is secondary to axiomatics.

Algorithmic content is off-topic.

Combinatorial structure is non-essential.

Logic is treated minimally.

Applications nowhere in sight.

And, cela va sans dire, no pictures.

So What? 12

Why should anyone care? Just some math guys having innocent fun.

Because Bourbaki is still considered by many as the Holy Grail of
Mathematics, even subconsciously.

This is actually a rather peculiar state of affairs. There are many
omissions in Bourbaki’s work: probability, mathematical physics, logic,
category theory. Moreover, the style clashes head on with more recent
developments. Just take a look at Knuth’s The Art of Computer
Programming or efforts to reconstruct math in the LEAN theorem prover.

Math Education 13

The most damaging impact of Bourbaki is probably in the world of math
education. Their approach to math is highly idiosyncratic, yet it has
became the more-or-less unchallenged framework for all of math
education in the middle of the last century.

In other words: All the math classes you have ever taken are Bourbaki’s
fault, more or less.

Very, very few students benefit from this; for computer science majors in
particular, it is nothing short of a catastrophe.

Trigger Warning 14

If you have very warm feelings in your heart concerning
mathematics, take a deep breath, relax and assume a gen-
eral position of open-mindedness.

The mind of no-mind, as it were.

The Mother of all Breakthroughs 15

This is the single-most important development in mathematics and the
sciences in the last century.

Cue the Outrage 16

Are you insane?

What about Eilenberg/MacLane, Erdős, Gödel, Grothendiek, Perelman,
Serre, Wiles, . . .

Sure, enormous and often locally unexpected progress has been made in
the last 100 years. But, globally, that is to be expected, ever since Leibniz
and Newton, mathematics has been on an ever accelerating trajectory.

And there is Turing and von Neumann, both brilliant mathematicians
who spent considerable energy on developing practical digital computers.

Thurston 17

The standard of correctness and completeness necessary to
get a computer program to work at all is a couple of orders
of magnitude higher than the mathematical community’s
standard of valid proofs.

Bill Thurston

Fields Medal 1982, used computers extensively in his seminal work on
low-dimensional topology. Supposedly taught himself to visualize 4-dim
objects.

Voevodsky 18

I can’t see how else it will go. I think the process will be
first accepted by some small subset, then it will grow, and
eventually it will become a really standard thing. The next
step is when it will start to be taught at math grad schools,
and then the next step is when it will be taught at the
undergraduate level. That may take tens of years, I don’t
know, but I don’t see what else could happen.

Vladimir Voevodsky

In response to question about computer verified/generated proofs.
Fields Medal 2002. Astonishing connections between Martin-Löf type
theory and classical homotopy theory.

Chazelle 19

CS is the new “new math,” and people are beginning to
realize that CS, like math, is unique in the sense that many
other disciplines will have to adopt that way of thinking. It
offers a sort of conceptual framework for other disciplines,
and that’s fairly new.
The Algorithm’s coming-of-age as the new language of sci-
ence promises to be the most disruptive scientific develop-
ment since quantum mechanics.

Bruno Chazelle

Princeton and Collège de France, used computational biology to explain
the behavior of bird flocks.

Quine 20

The utterly pure theory of mathematical proof and the ut-
terly technological theory of machine computation are at
bottom one, and the basic insights of each are insights of
the other.

W. V. O. Quine

Expressed a bit more directly: you cannot really understand proofs
without understanding computation, and vice versa.

Manin 21

Generally, computer science, that no-nonsense child of logic,
will exert growing influence on our thinking about the lan-
guages by which we express our vision of mathematics.

Yuri Manin

This is actually a more general phenomenon: computers are used in just
about all fields of human discourse, and their use will inject the
mathematical structure of computation and computers into these fields.

Computational XXX 22

Computational Anthropology
Computational Biology
Computational Physics
Computational Chemistry
Computational Neuroscience
Computational Economics
Computational Finance
Computational Linguistics
Computational Statistics
Computational Metaphysics

http://www.cs.cmu.edu/~cdm/resources/FitelsonZalta07.pdf

Specifically in Math 23

numerical computation

symbolic computation

mathematical knowledge management

proof assistants, theorem provers

So What’s The Problem? 24

Most current presentations of math in computer science ignore
computation and are very tepid on logic. Including those that are
supposedly custom designed for computer science majors, for the most
part you get some rehash of the old Bourbaki style with a bit of
combinatorics and graph theory thrown in; plus a bit of bad pseudo-code.

This is easy to check: take a textbook and mark all the chapters that
could easily have been written 50 years ago, before the computer
revolution really took off. Make sure you have lots of markers at hand,
you’ll need them.

Never mind everything that has happened in the last 50 years.

CDM 25

CDM is simply an attempt to take these comments seriously and perhaps
fix a few of the problems mentioned.

Focus on logic and computation.

Emphasize material that is most relevant for the CS/math connec-
tion.

Use modern computational tools to help developing insights, search
for examples/counterexamples, not waste time on routine computa-
tions, . . .

Learning Style 26

This may sound like we are going to be concerned mostly with a rather
formal and abstract development. Nothing could be further from the
truth.

Far and away the most important challenge is for you to develop your

intuition

Technical details and formalization are necessary and indispensable, but
intuition comes first—by a long shot. Don’t even think about formalizing
anything without first having developed a good intuitive grasp.

This holds for definitions, theorems, proofs, algorithms, data types.

Concepts and Definitions/Theorems 27

intuition understand the concept’s meaning, its purpose, its intent

examples some objects that the definition applies to

counterexpl some objects where it does not, but almost

formalize pin things down in a semi-formal way, a definition

computation understand the computational aspects (if any)

results the basic theorems associated with the concept

links connections to other concepts

Proofs 28

intuition understand the objective precisely, develop a battleplan

formal refine the argument to a semi-formal level

examples what does the proof say about some concrete objects

counterexpl what goes wrong if we change hypotheses/conclusions

computation understand computational implications (if any)

results how does the proof help to clarify the given assertion

Good Proofs 29

The last item is particularly important: ideally, a good proof provides
additional insights into the claim; it shows not just that it is true, but
why it is true.

This is one of the reasons why it may be interesting to have multiple
proofs for the same theorem—they all can shed additional light on the
subject.

By a formal proof I will always mean an argument that can be verified by
a proof checker. Such formal proofs are quite closely connected to our
subject (one can think of proofs as computations), but we will never write
out formal proofs. Instead, we use pseudo-formal proofs, proof sketches,
sketches of proof sketches–exactly the stuff you are already used to.

The Book of Proofs 30

Martin Aigner, Günter Ziegler
Proofs from THE BOOK
Springer 2014 (5th ed.)

1 Administrivia

2 CDM, the Idea

3 Example: Equivalence

Example: Equivalence Relations 32

An equivalence relation is supposed to express similarity between objects,
a sort of generalized identity. For example, we may want to identify
congruent triangles or triangles with the same area. Or functions with
the same rate of growth.

To formalize this notion, one uses a binary relation ρ ⊆ A × A that is

reflexive IA ⊆ ρ

symmetric ρop ⊆ ρ

transitive ρ ◦ ρ ⊆ ρ

One usually writes [x] or [x]ρ for the equivalence class of x ∈ A, and
A/ρ = { [x]ρ | x ∈ A } for the quotient set. The cardinality of A/ρ is the
index of ρ (in particular in the finite case).

Bourbaki Volume I: Sets 33

Partitions 34

Alternatively, we can consider partitions of A, subsets Ai ⊆ A, i ∈ I,
that are non-empty, pairwise disjoint and cover A:

Ai ̸= ∅

i ̸= j ⇒ Ai ∩ Aj = ∅⋃
i∈I Ai = A

The Ai are called the blocks of the partition.

The Connection 35

Proposition
For any equivalence relation on A and x, y ∈ A:

[x]ρ ∩ [y]ρ = ∅ or [x]ρ = [y]ρ

Hence, we can think of A/ρ as a partition, a set of blocks.

So we can interpret an equivalence relation as a partition.

And Back 36

On the other hand, given a partition (Ai), we can define an equivalence
relation ρ on A =

⋃
Ai:

x ρ y ⇔ ∃ i (x, y ∈ Ai)

Lemma
We have two mutually inverse operations:

toblk : equivalence relations −→ partitions
toequ : partitions −→ equivalence relations

Application: Counting 37

It is natural to ask how many equivalence relations there are on a set of
cardinality n.

It is far easier to do this by counting partitions, rather than using the
original definition. These numbers are called Bell numbers Bn. For
n = 0, . . . , 10 the values are

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975

There is no nice closed form for Bn, but we have the following recurrence.

Lemma

Bn+1 =
n∑

k=0

(
n

k

)
Bk

Proof 38

Write ℓ for the number of blocks, so 1 ≤ ℓ ≤ n.

For n = 0 we have Bn = 1.

Suppose we have a partition (Ai | i ∈ [ℓ]) of [n + 1].

We may safely assume that n+1 ∈ Aℓ. Let |Aℓ| = k + 1 for 0 ≤ k ≤ n.

But then (Ai | i ∈ [ℓ−1]) is a partition of a set of cardinality n − k.

By induction, the number of such partitions is Bn−k. Clearly, the number
of choices for block Aℓ is

(
n
k

)
.

Done by summation. 2

Computational Content 39

We can extract a (pretty lousy) recursive algorithm for generating all
partitions from the proof.

The exponential generating function for the Bell numbers∑ Bn

n! xn = eex−1

Asymptotics are quite tricky, a fairly simple result is

Bn <

(
.792 n

ln(n + 1)

)n

Digression: Set Theory 40

The proof argument really leans heavily on (baby) set theory: one defines
all the basic mathematical concepts (relation, equivalence relation,
partition, block, natural number, cardinality, . . .) purely in terms of set
theory.

One can then construct very precise proofs such as the last one leaning
on an axiomatic system of set theory, say, Zermelo-Fraenkel with Choice.
Most of the axioms are perfectly reasonable and intuitive, so almost
everyone would accept such an argument as compelling.

Alas, if every math concept is translated into sets, some weirdness can
result and produce some amount of cognitive dissonance.

Implementation 41

Generic CS Question:
How would one go about implementing some math concept?

The definition as a set of pairs translates directly into a possible
implementation: we can think of an equivalence relation as a container
type whose elements are pairs, a record type.

Using the characterization as partitions, we could also store a list of
blocks, using containers of containers.

Exercise
Compare these implementations. How useful would they be?

Digression: Efficiency 42

For those of you who cringe at the thought of implementing an
equivalence relation by a hashtable-of-hashtables, remember Knuth’s
dictum:

Premature optimization is the source of all evil.

Having said that, you have to be able to put on your hacker goggles
when necessary.

Cue Java horror story.

Going Infinite 43

Standard data structures work only for finite relations. What should we
do with infinite relations?

A relation is a subset of a Cartesian product:

ρ ⊆ A × B

which is “the same” as a map

ρ̂ : A × B −→ 2

So we could implement a function that, on input (a, b) ∈ A × B, returns
true/false depending on whether (a, b) ∈ ρ.
This is just GANS (general abstract nonsense), but functions actually are
hugely useful in computing with equivalence relations.

Classifiers 44

In many cases, equivalence of two objects is determined by measuring
some particular property of the objects: length, area, number of
components, acceptance language and so on.

We can model this by a classifier function f : A → X .
Define a binary relation on A, the kernel relation Kf of f , by

x Kf y ⇐⇒ f(x) = f(y)

It is easy to see that Kf is always an equivalence relation: in essence, we
just use the fact that equality is an equivalence relation.

Succinct Representations 45

If the function f is easily computable, we have a way to implement Kf

without direct use of any container data structures: a program that
computes f is will do.

This works for infinite carrier sets, at least in principle. For example, a
function f : N → N could be used to represent an equivalence relation on
the naturals.

Exercise
Discuss how this succinct representation differs from the more traditional
data structure approach when the carrier set is finite.

Innocent Question 46

Are all equivalence relations kernel relations?

Sure, use the classifier f(x) = [x]ρ.

That works, but it is not really a good answer: the codomain of f is the
power set of A, computationally we’d like to avoid power sets if at all
possible.

Better Question: Can we use a classifier f : A → A ?

Heavy Guns 47

The natural approach to finding a classifier f : A → A for an equivalence
relation ρ is to pick a particular element x′ ∈ [x]ρ for all equivalence
classes.

We can then define f(x) = x′.

Alas, to do this in general, we need the Axiom of Choice. This axiom is
fairly uncontroversial at this point, Zermelo-Fraenkel with Choice (ZFC)
is the standard foundational system in math.

Bourbaki strikes again. It is interesting that most mathematicians would
point to ZFC as the background theory that all their work is grounded in,
without actually knowing in detail exactly what the axioms are.

The Axiom of Choice 48

Here is one way to describe this axiom:

Definition (Axiom of Choice)
For any family (Ai)i∈I of pairwise disjoint, non-empty sets, there is a
choice set C such that |C ∩ Ai| = 1 for all i.

Here I is an arbitrary index set and there are no additional constraints on
the Ai beyond non-emptiness.

To construct our classifier function, given a choice set C for the family of
blocks, we can simply define

f(x) = y ⇐⇒ [x]ρ ∩ C = {y}

Axiom Schmaxiom 49

Innocent Question: Can’t we just ignore this GANS kind of stuff?

In mathematics, absolutely not.

Theorem (Ash, 1973)
The additive groups ⟨R, +⟩ and ⟨C, +⟩ are isomorphic iff the Axiom of
Choice holds.

OK, but how about just plain computer science?

My claim is, the answer is still a loud NO. GANS is directly important for
programming language semantics and verification, but even ignoring this
part, one can still learn a lot from abstract ideas.

Oh, Come On 50

If the damn axiom is so important, why don’t we just assume it’s true
and be done with it, once and for all?

The Axiom of Choice is obviously true,
the Well-Ordering Principle obviously false,
and who can tell about Zorn’s Lemma?

Jerry Bona

Logic sometimes coexists very uneasily with psychology.

The Dark Side 51

Theorem (Banach-Tarski Paradox (AC))
The unit sphere can be decomposed into finitely many pieces, which
pieces can be reassembled to form a sphere of radius 2.

This sounds utterly wrong: the volume won’t work out. Alas, the pieces
in the Banach-Tarski decomposition are very strange and cannot be
visualized. In particular we cannot assign qualities such as “volume” to
these pieces.

So, this result is a correct theorem of ZFC, but it is very, very
counterintuitive.

Projecting Down to Earth 52

The sets we encounter in discrete math and CS typically carry a natural
order. But then we can define a canonical classifier

f(x) = min [x]ρ

In set theory, this requires a well-ordering to make sure the minimal
element exists. In practice, this is not an issue, everything we touch in
CS is well-ordered (famous last words).

For example, congruence modulo 4 on [10] produces the canonical
classifier

x 1 2 3 4 5 6 7 8 9 10
f(x) 1 2 3 4 1 2 3 4 1 2

So we can implement f as an integer array with very fast O(1)
equivalence test.

Going Dynamic 53

Our canonical representation is good, but what if the equivalence relation
is being generated dynamically, so we don’t yet know what the least
element of [x] is (a smaller representative might pop up later)†?

More precisely, suppose we are performing some construction that
discovers elements x, y ∈ A that have to be equivalent. If we already
have f(x) = f(y), there is nothing to do.

But what if currently a = f(x) ̸= b = f(y)? We could set f(y) = a, but
that is not enough: we need to update all z such that f(z) = b.

Easy to do and correct, but not efficient.

†This is not the type of question typically discussed in combinatorics.

A Brilliant Trick 54

We can still use a classifier f : A → A , but relax the conditions a bit:

x ρ y ⇐⇒ FP(f, x) = FP(f, y)

Here FP(f, x) is the (unique) fixed point on the orbit of x under f . Of
course, we have to make sure that this fixed point really exists.

The drawback is that an equivalence test is no longer O(1): it depends
on the length of the transients under f . This is the key for optimizations,
see below.

Construction 55

Initially, we set f(x) = x for all x: every equivalence class consists of just
the element itself.

If a new equivalence between x and y is discovered, we proceed almost in
the same way as for the canonical classifier:

compute a = FP(f, x) and b = FP(f, y)
set f(b) = a

We only update one function value, but we have to compute fixed points
first. The only obvious bound for traversing the transient part of an orbit
is O(n). Still, things look mildly promising.

A Random Relation on [100] 56

Optimization 57

Using natural hacks like path compression and ranking.

Exercises 58

Exercise
Read up on the Union-Find algorithm and implement it.
Compare the running time to the non-optimized version above.

Exercise
It is easy to foil the non-optimized version.
Can you foil the full Union-Find method?

Exercise
Read up on the running time analysis of Union-Find.

Visualization 59

While we are looking at pretty pictures, here is another way of plotting
relations.

We can think of an endorelation ρ on A as an A × A Boolean matrix Bρ:

Bρ(a, b) = 1 ⇐⇒ a ρ b

Fine, but to get an A × A Boolean matrix we need a map A × A → 2
together with a total order on A. In the finite case, we want to think of
A as a list

A = a1, a2, . . . , an−1, an

so that we are dealing with an n × n matrix.

Bad Picture 60

Consider the equivalence relation on 2n induced by the classifier
f(x) = #1 x. Here is a picture for n = 6.

The picture clearly shows reflexivity and symmetry, but transitivity is
utterly opaque.

Good Picture 61

The first picture used standard lexicographic order. By adjusting the
order of the carrier set, we get the “right” picture.

Exercises 62

Exercise
What is the order used in the last picture?
Is there another order that might be more natural?

Exercise
Define x, y ∈ 2n to be equivalent if x can be cyclically rotated to get y.
What would the nice picture look like for n = 6?

	Administrivia
	CDM, the Idea
	Example: Equivalence

