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Computational Memes 2

There are several general ideas that are useful to organize computation,
perhaps the two most important ones being

Recursion (self-similarity)

Iteration (repetition)

Recursion is quite popular and directly supported in many programming
languages.

Iteration usually requires some amount of extra work (and, to really make
sense, support for functions as first class citizens).



Droste Effect 3



Menger Sponge 4



Iteration 5

Definition
Let f : A → A be an endofunction. The kth power of f (or kth iterate of f) is
defined by induction as follows:

f0 = IA

fk = f ◦ fk−1

Here IA denotes the identity function on A and f ◦ g denotes composition of
functions.

Informally, this just means: compose function f (k − 1)-times with itself.

fk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k terms



General Laws 6

Without any further knowledge about f there is not much one can say about
the iterates fk. But the following always holds.

Lemma (Laws of Iteration)

fn ◦ f = fn+1

fn ◦ fm = fn+m

(fn)m = fn·m

Exercise
Prove these laws by induction using associativity of composition.



Wurzelbrunft’s Idea 7

Prof. Dr. Alois Wurzelbrunft∗ stares at these equations and immediately
recognizes a deep analogy to exponentiation.
He also remembers that there is a method for fast exponentiation based on
squaring:

a2e = (ae)2

a2e+1 = (ae)2 · a

which allows us to compute ae in O(log e) multiplications.

Wurzelbrunft’s Conclusion:
There is an analogous “fast iteration” method.

∗A famous if fictitious professor in the Bavarian hinterland.



Aside 8

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

S. Banach

So is Wurzelbrunft brilliant?



Fast Iteration 9

Suppose we want to compute f1000. The obvious way requires 999
compositions of f with itself.

By copying the standard divide-and-conquer approach for fast exponentiation
we could try

f2n = (fn)2

f2n+1 = f ◦ (fn)2

This seems to suggest that we can compute fn(x) in O(log n) applications of
the basic function f .

After all, it’s just like exponentiation, right?



Computational Compressibility 10

There is an interesting idea here: we would like to take a plain computation

C = C0, C1, C2, . . . , C42, . . . , Cn

and somehow translate it into another computation

C′ = C′
0, C′

1, . . . , C′
m

such that

the result is the same, but
m ≪ n

Of course, this won’t always be possible, but sometimes we might be able to
“compress” a computation (by using a smarter algorithm).



Closed Forms 11

Consider the orbit of a under the rational function (this is a clear case of abuse
of a Möbius transformation)

f(x) = 2 + 2x

3 + x

A little fumbling shows that

f t(x) = 2(a − 1) + (a + 2)x
2a + 1 + (a − 1)x a = 4t

So there is no need to iterate f , we can simply do the coefficient arithmetic.



But if you insist . . . 12
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Linear Maps 13

If the function f in question is linear it can be written as

f(x) = M · x

where M is a square matrix over some suitable algebraic structure. Then

f t(x) = M t · x

and M t can be computed in O(log t) matrix multiplications.

So this is an exponential speed-up over the standard method.



Polynomial Maps 14

Another important case is when f is a polynomial map

f(x) =
∑

aix
i

given by a coefficient vector a = (ad, . . . , a1, a0).

In this case the coefficient vector for f ◦ f can be computed explicitly by
substitution. This is useful in particular when computation takes place in a
quotient ring such as R[x]/(xn − 1) so that the expressions cannot blow up.

Again, an exponential speed-up over the standard method.



But Beware of Hasty Conclusions 15

But we cannot conclude that f t(x) can always be computed in O(log t)
operations.

The reason fast exponentiation and the examples above work is that we can
explicitly compute a representation of f ◦ f , given the representation of f .

But, in general, there is no fast representation for f ◦ f , we just have to
evaluate f twice.

Just think of f as being given by an executable, a compiled piece of C code.
We can wrap a loop around the executable to compute f t, but that just
evaluates f t-times, in the obvious brute-force way. No speed-up whatsoever.

Exercise
Ponder deeply. Assume the speed-up trick always works and figure out what
that would mean for complexity theory.



Hasty Conclusion I 16

Speaking about hasty conclusions, here is a simple inductively defined sequence
of integers.

a1 = 1
an = an−1 + (an−1 mod 2n)

Thus, the sequence starts like so:

1, 2, 4, 8, 16, 20, 26, 36, 36, 52, 60, 72, 92, 100, 110, 124, 146, 148, 182, 204

This seems rather complicated. The function appears to be increasing in a
somewhat complicated manner.

Alas, there is a rude surprise.



Ultimately Linear 17

The sequence is ultimately linear: a396+k = a396 + k · 194 for k ≥ 0.
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The plot on the left is the sequence, on the right (in red) are the forward
differences.

Exercise
Figure out why the sequence is ultimately linear.



Hasty Conclusion II 18

Here is another strange integer sequence:

an = ⌈2/(21/n − 1)⌉ − ⌊2n/ ln 2⌋

This time, the sequence starts like so:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .

and continues like this for a long, long time, for trillions of terms.

Note that it is a minor pain to compute the terms; it’s not even clear that
n 7→ an is primitive recursive †. At any rate, it sure looks like the sequence is
constant 0. Alas

a777 451 915 729 368 = 1

†The expression looks like real arithmetic, but it can be handled with just integer arithmetic.



Iteration versus Recursion 19

Iteration can be construed as a special case of primitive recursion.

F (0, y) = y

F (x + 1, y) = f(F (x, y))

Then F (x, y) = fx(y).

This is really no more than the standard bottom-up approach to computing an
primitive recursive function, expressed in an elegant and concise way.



As Iteration 20

Conversely, iteration can be used to express recursion. Suppose

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

Define a new function H by

H : N × N × Nk −→ N × N × Nk

H(x, z, y) = (x + 1, h(x, z, y), y)

Then

f(x, y) = snd(Hx(0, g(y), y))

This is perhaps the most natural definition, but if we wanted to we could make
H unary by coding everything up as a sequence number.



Unary Iteration 21

More surprisingly, suppose we have some simple basic functions such as

x + y x ∗ y x
•− y rt(x)

Here rt(x) is the integer part of
√

x. These functions suffice to set up the usual
coding machinery. If we add an additional operation of iteration

f(x) = gx(0)

we can replace primitive recursion by unary iteration.

Exercise
Come up with a precise version of this statement (define a clone) and give a
detailed proof.



Trajectories and Orbits 22

Definition
The trajectory or orbit of a ∈ A under f is the infinite sequence

orbf (a) = a, f(a), f2(a), . . . , fn(a), . . .

The set of all infinite sequences with elements from A is often written Aω.
Hence the we can think of the trajectory as an operation of type

(A → A) × A → Aω

that associates a function on A and element in A with an infinite sequence
over A.



Terminology Warning 23

Sometimes one is not interested in the actual sequence of points but rather in
the set of these points:

{ f i(a) | i ≥ 0 }

While the sequence is always infinite, the underlying set may well be finite,
even when the carrier set is infinite.

In a sane world one would refer to the sequences as trajectories, and use the
term orbit for the underlying sets. Alas, in the literature the two notions are
hopelessly mixed up.
So, when we refer to a “trajectory” we will always mean the sequence, but,
bending to custom, we will use “orbit” for both.



Digression: Dedekind’s Ketten (Chains) 24

Here is a clever definition due to Dedekind: given an endofunction f and a
point a, the corresponding chain is defined to be⋂

{ X ⊆ A | a ∈ X, f(X) ⊆ X }

Thus, the chain is the least set that contains a and is closed under f . That is
exactly the orbit of a under f , considered as a set.

Who cares?

Dedekind’s definition does not require the natural numbers. In fact, it can be
used to define them. In Dedekind’s view, this means that arithmetic can be
reduced to logic.



From Chains to Naturals 25

Here is how. Suppose we have a function f : A → A and a point a ∈ A such
that

f is an injection,
a is not in the range of f ,
A is the chain of f and a.

Dedekind calls these sets simply infinite.

We can think of a as 0 and, more generally, we can think of fn(a) as n.

So this is a way of describing the natural numbers, the smallest infinite set,
without any hidden references to the naturals.



The Price: Impredicativity 26

According to Dedekind, the chain C defined by f and a has the form

C =
⋂

{ X ⊆ A | a ∈ X, f(X) ⊆ X }

But note that C is one of the X’s on the right hand side. So there is some
(non-vicious) circularity in this approach. Most mathematicians would not bat
an eye when confronted with definitions like this one, they are totally standard.

And the payoff is huge. For example, when Bernstein told Dedekind about his
correct proof of the “Cantor-Schröder-Bernstein” theorem, he was shocked to
hear that Dedekind had a much better proof, based on his chains.



The Lasso 27

At any rate, if the carrier set is finite, all trajectories must ultimately wrap
around and all orbits must be finite:

What changes is only the length of the transient part and the length of the
cycle (in the picture 5 and 11).



Limit Cycles 28

The lasso shows the general shape of any single orbit, but in general orbits
overlap. All orbits with the same limit cycle are called a basin of attraction in
dynamics.



Reachability 29

The geometric perspective afforded by the diagram also suggests to study
path-existence problems.

Definition
Let f be a function on A and a, b ∈ A two points in A. Then point b is
reachable from a if for some i ≥ 0:

f i(a) = b

In other words, point y belongs to the orbit of x.

Proposition
Reachability is reflexive and transitive but in general not symmetric.

Reachability is symmetric when A is finite and f injective (and therefore a
permutation): each orbit then is a cycle and forms an equivalence class.



Confluence (aka Basins of Attraction) 30

Definition
Let f be a function on A and a, b ∈ A two points in A. Points a and b are
confluent if for some i, j ≥ 0:

f i(a) = f j(b)

In other words, the orbits of a and b merge, they share the same limit cycle
(which may be infinite and not really a cycle).

Reachability implies confluence but not conversely. For finite carrier sets
reachability is the same as confluence iff the map is a bijection.



Confluence is an Equivalence 31

Proposition
Confluence is an equivalence relation.

Reflexivity and symmetry are easy to see, but transitivity requires a little
argument.
Let f i(x) = f j(y) and fk(y) = f l(z), assume j ≤ k. Then with d = k − j ≥ 0
we have

f i+d(x) = f j+d(y) = fk(y) = f l(z).

Each equivalence class contains exactly one cycle of f , and all the points whose
orbits lead to this cycle – just as in the last picture.
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A Continuous Decision Problem 33

Consider the second-degree complex polynomial

pc(z) = z2 + c

where c ∈ C is a constant. We can turn this into a nice decision problem:

Problem: Mandelbrot Problem
Instance: A compllex number c.
Question: Is the orbit of 0 under pc bounded?

Of course, this is not a classical decision problem where the instances are
required to be finitary objects, but let’s ignore that.



The Mandelbrot Set 34

Definition
The Mandelbrot set M ⊆ C is the set of Yes-instances of the Mandelbrot
Problem.

Note that it is quite tricky to determine whether a particular complex number c
belongs to M or not: we can compute pt

c(0) for small values of t, but it is
often unclear whether this sequence diverges.

M 0, i, −i, 1/5, −11/10, −13/10, −19/10, −2

M 1, 2, 1/2, 1/4, 2i, −2i



Mandelbrot 1 35



Mandelbrot 2 36



Mandelbrot 3 37



Mandelbrot 4 38



And the Colors? 39

A priori, we only get a black and white picture: c is in M or not in M .

Again, it is not even clear how to do this much: there is no simple test to
check if |pt

c(0)| → ∞ as n → ∞.

In practice, one computes a few values |pt
c(0)| and checks whether they seem

to tend to infinity.

Colors can be introduced for example based on the speed of divergence.

Doing this right is somewhat of a black art, see Mandelbrot for some
background.

http://en.wikipedia.org/wiki/Mandelbrot_set


Squaring 40

wHzL � z wHzL � z2



Squaring plus Offset 41

The symbolic orbit of 0 under z 7→ z2 + c.

0 0
1 c

2 c2 + c

3 c4 + 2c3 + c2 + c

4 c8 + 4c7 + 6c6 + 6c5 + 5c4 + 2c3 + c2 + c

5 c16 + 8c15 + 28c14 + 60c13 + 94c12 + 116c11+
114c10 + 94c9 + 69c8 + 44c7 + 26c6 + 14c5 + 5c4 + 2c3 + c2 + c

Note that the coefficients are rather wild, there is little hope to understand
these polynomials.



Why Now? 42

Several mathematicians developed the foundations for structures such as the
Mandelbrot set in the early 20th century, in particular Gaston Julia and Pierre
Fatou. Fractal dimensions were also well understood, see the work by Felix
Hausdorff and Abram Besicovitch.

Why did they not discover the Mandelbrot set?

Because they had no computers, unlike Monsieur Mandelbrot who happened to
be working for IBM at Yorktown Heights.
So one of the most important developments in geometry in the 20th century
was quite strongly connected to computation and visualization.
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Calculus and Fixed Points 44

Many interesting applications of fixed points lie in the continuous domain:
finding a fixed point is often a good method in calculus to compute certain
numbers.

A classical problem: calculate
√

2, for some value of 2.

By “calculate” we mean: give a method that produces as many digits in the
decimal expansion of

√
2 as desired.

One obvious way to do this is a version of binary search: given an
approximation a, b such that a2 < 2 < b2 try (a + b)/2.
Fine, but a bit complicated.



Iteration to the Rescue 45

Consider the map

g : R+ → R+

g(x) = x/2 + 1/x

Then the iterates gn(1) approximate
√

2.

Note that
√

2 is in fact a fixed point of g. Alas, there is a problem: it is plain
false to claim that

FP(g, 1) =
√

2

All the numbers in the orbit are rational, but our goal is an irrational number,
which therefore cannot be a fixed point.



The Power of Wishful Thinking 46

But wouldn’t it be nice if we could set

a = gω(1)

so that

g(a) = g(gω(1)) = gω(1) = a

In a way, we can: we can make sense out of gω(1) by using limits: with luck
there will be some number a such that

|gn(1) − a| → 0 n → ∞.

Of course, this does not always work.



Success 47

In our case we duly have

lim
n→∞

gn(1) =
√

2.

and
√

2 is indeed a fixed point of g, the orbit just never reaches this particular
point.
This is no problem in real life: we can stop the iteration when |2 − (gn(1))2| is
sufficiently small.

As a matter of fact, convergence is quite rapid:

0 1.0000000000000000000
1 1.5000000000000000000
2 1.4166666666666665186
3 1.4142156862745096646
4 1.4142135623746898698
5 1.4142135623730949234
6 1.4142135623730949234



Newton’s Method 48

This is Newton’s Method: to find a root of f(x) = 0, iterate

g(x) = x − f(x)
f ′(x) ,

and pray that everything works.

Obviously f needs to be differentiable here, and we would like f ′(x) to be
sufficiently far away from 0 so that the second term does not become
unreasonably large.



Application: Reciprocal 49

A typical application of Newton’s Method is to determine 1/a in high precision
computations.

Here we use functions

f(x) = 1/x − a

g(x) = 2x − ax2

The point is that we can express division in terms of multiplication and
subtraction (operations that are arguably more basic).



Example 50

Numerical values for a = 1.4142135623730950488 ≈
√

2.

0 1.0000000000000000000
1 0.5857864376269049511
2 0.6862915010152396095
3 0.7064940365486259451
4 0.7071062502115925513
5 0.7071067811861488089
6 0.7071067811865475244
7 0.7071067811865475244

Verify the result:

0.7071067811865475244 × 1.4142135623730950488 = 1.000000000000000000



Schröder’s Method (1870) 51

If quadratic convergence is not enough one can speed things up tremendously
by iterating more complicated functions. For example, define fa(x) to be the
rational function

x −
(
x2 − a

) (
3x2 + a

) (
3x6 + 27x4a + 33x2a2 + a3)

2x (5x4 + 10x2a + a2) (x4 + 10x2a + 5a2)

Then fa can be used to approximate square roots very rapidly.

f2
2 (1) = 94741125149636933417873079920900017937

66992092050551637663438906713182313772

The error here is 2.2281 × 10−76, after just 2 steps!



No Free Lunch 52

Of course, there is a cost: function evaluation becomes more complicated.
Specifically, more costly multiplications and divisions are needed than in the
plain Newton case. The hope is that this will be more than offset by the
smaller number of iterations.

Since the Gerlach function fa(x) would presumably be evaluated numerous
times as part of some library this is a good place to optimize by precomputing
x2, x4 and so on.

There is also the minor problem of figuring out what these complicated
functions should be in the first place.

Exercise
Determine the optimal evaluation strategy for fa(x).



The Real World 53

Needless to say, complicated numerical methods should not be implemented by
hand, they belong into a well-thought-out and well-tested library.

For example, the Boost C++ library supports a number of fast root finding
methods.

#include <boost/math/tools/roots.hpp>

template <class F, class T>
T schroeder_iterate(F f, T guess, T min, T max, int digits);

Exercise
Try out the various root finding methods in Boost.



Brute Force 54

As we have seen, with luck, a fixed point for a continuous function f : R → R
can be found by plain iteration, at least in the sense that we can produce a
numerical approximation (perhaps even rapidly).

We compute an = fn(a) and exploit the fact that if there is a limit a = lim an

then a is a fixed point of f .
Moreover, an may be very close to a for reasonably small values of n so we can
actually get our computational hands on a good approximation.

Alas, iteration does not always produce fixed points, even when they are easy
to detect visually.
Here are some examples.



A Nice Fixed Point 55

cos x = x
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The Logistic Map 56

Cosine is a transcendental function, and thus relatively complicated. Alas, as
the Mandelbrot set suggests, even with second order polynomials strange things
can happen under iteration. Here is a real example:

fp(x) = p · x · (1 − x)

where 0 ≤ p ≤ 4. Note that for these parameter values we have

fp : [0, 1] → [0, 1]

so we can actually iterate the map.

This is the so-called logistic map, a famous example in dynamics.

Its behavior depends drastically and very unexpectedly on the parameter p.



p = 2.8 57
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p = 3 58
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p = 3.5 59
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p = 3.99 60
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Tent Maps 61

Differentiability is not necessary at all, piecewise linear will do.
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Tent Map Squared 62
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A 2-Cycle 63
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A Mess 64
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Sharkovskii’s Theorem 65

Here is a remarkable theorem describing chaos in real valued functions.
Consider the following weird ordering of the natural numbers, the so-called
Sarkovskii ordering (of order type ω2 + ωop):

3, 5, 7, 9, . . . , 2 · 3, 2 · 5, . . . , 4 · 3, 4 · 5, . . . , 23, 22, 21, 20.

Theorem (Sharkovskii 1964)
For any continuous function f : R → R : if f has a cycle of length α then f
has a cycle of length β for all α < β in the Sharkovskii ordering.

Hence, if there is a 3-cycle, then there are cycles of any length.
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