
CDM

First-Order Logic

Klaus Sutner

Carnegie Mellon University
Spring 2023

1 First-Order Logic

2 Syntax

3 Model Theory

4 Proof Theory

Logic, the Field 2

According to the Handbook of Mathematical Logic, the field of logic is
organized into 4 areas:

set theory
recursion theory
proof theory
model theory

You have seen some amount of set theory and recursion theory, we will now
turn to other two areas—though only with the lightest touch.

Entscheidungsproblem 3

Recall Hilbert’s dream: a decision algorithm for all of mathematics.

As we now know, in its orginal form, this goal is utterly unachievable;
computability theory has established hard upper bounds as to what is
computable (even ignoring complexity issues).

Very well, let’s scale back: let’s just try to answer questions in a very limited
domain. But we do want the method to be purely mechanical and not require
any intuitive insights, and certainly not clairvoyance.

How should we go about this little project?

Language 4

Asking questions in ordinary language is tempting, but can’t really work; there
is too much ambiguity and general lack of precision. Consider the following
classical statement:

There do not exist four numbers, the last being larger than two,
such that the sum of the first two, both raised to the power of the
fourth, are equal to the third, also raised to the power of the fourth.

It’s not exactly clear what this is supposed to mean. In more modern parlance,
and using a bit of symbolic notation, this turns into

There are no positive integers x, y, z and n, where n > 2, such
that xn + yn = zn.

Now it’s clear: this is Fermat’s Last “theorem.”

Pushing Things 5

We can take one more step and translate into a strictly formal language.
Starting from the last sentence, this translation is not hard:

¬ ∃x, y, z, n ∈ N+ (xn + yn = zn ∧ n > 2)

The variables here are assumed to range over the positive integers as indicated
by the annotation at the quantifier.

Even if you prefer the standard notation over the more compact one (and most
people do), the latter is clearly better suited as input to any kind of algorithm –
it is much easier to parse and it eliminates ambiguity.

Designing a Logic 6

There are three major parts in the design of a logic:

language (syntax)

model theory (semantics)

proof theory (deductions)

Describing a language is fairly straightforward, one has to describe the rectype
of formulae in the logic. Things get somewhat interesting if one is interested in
building a proof assistant or a theorem prover, but we won’t.

Model theory (study of the corresponding structures) brushes up against set
theory, at least for infinite models, and can be quite challenging. There will be
no problem for the models we are interested in.

Proof theory is arguably the most difficult part: while proofs (deductions) are
just finite data structures, analyzing and understanding them in detail is hard.

Many Logics 7

There are many examples of useful systems of logic:

propositional, equational, first-order, second-order, higher-order,
modal, linear time temporal, branching time temporal, linear,
intuitionist, infinitary logics, . . .

Which one is appropriate for a particular problem depends very much on the
problem.

And, there is a trade-off: making the logic powerful usually results in
computational complexity issues; keeping it weak limits applicability.

Convention: We are going to deal exclusively with classical first-order logic.

Wishlist 8

We need a logic that is powerful enough to express statements such as

The function x 7→ x3 is continuous.
There is a prime between n and 2n (for n > 1).
Deadlock cannot occur (in some protocol).
Upon completion, the stack is empty.
The algorithm terminates on all inputs.

For example, the second assertion (known as the Bertrand-Chebyshev theorem)
is of importance for algorithms that need to select primes of some suitable size:
there is a prime between 2k and 2k+1, so we can select a prime with any given
number of bits (this is just the tip of an iceberg).

First-Order Logic 9

So how do we construct a language suitable for (most of) mathematics and
theoretical computer science?

Let’s start with a small fragment, say, arithmetic. A reasonable approach would
be to use only

basic arithmetic concepts (addition, multiplication, order) and
purely logical constructs such as “and”, “not”, “for all” etc.

The logical constructs will include all of propositional logic so we can still
combine assertions by connectives “and”, “or” and the like. But there will also
be quantifiers that allow one to make statements about the existence of objects
with certain properties and about properties of all objects.

Terminology: This type of system is called first-order logic (FOL) or predicate
logic. In the 20th century, FOL emerged as the de facto workhorse in all of
math and TCS.

The Language 10

The language of first-order logic consists of the following pieces:

constants that denote individual objects,
variables that range over individual objects,
relation symbols that denote relations,
function symbols that denote functions,
logical connectives “and,” “or,” “not,” “implies,” . . .
existential quantifiers that express “there exists,”
universal quantifiers that express “for all.”

Notation 11

a, b, c, . . . for constants,

x, y, z, . . . for variables,

∨, ∧, ¬, ⇒ for the logical connectives,

∃ for the existential quantifier,

∀ for the universal quantifier,

f , g, h, . . . for function symbols,

R, P , Q, . . . for relation symbols.

Allow = for equality.

These are just conventions, there are no sacred cows here. E.g., we might also
use subscripted symbols and additional connectives such as ⊕ or ⇔ .

Signatures and Arities 12

One should distinguish more carefully between function and relation symbols of
different arity: nullary, unary, binary functions and so on.

In most concrete structures only a finite number of function and relation
symbols are needed.
Hence, we can convey the structure of the non-logical part of the language in a
signature or similarity type: a list that indicates the arities of all the function
and relation symbols.

Example
The standard signature for group theory is (2, 1, 0): one binary function symbol
for group multiplication, one unary function symbol for the inverse operation, a
nullary function symbol (constant) for the neutral element.
Alternatively, we could use signature (2) only—but at the cost of slightly more
complicated axioms.

Large Languages 13

There are occasions when one wants to use countably many function or relation
symbols. It is easy to describe languages of this form. For example, we could
allow for constants cn, n ∈ N; together with axioms ci ̸= cj for i < j, this
would make sure that all models are infinite.

In pure mathematical logic one also considers languages of cardinalities higher
than ℵ0, but this will be of no interest to us. Note that some amount of set
theory is needed just to define such a language. We don’t have to worry about
these.

Example: Arithmetic 14

For arithmetic it is convenient to have a relation symbol for order:

L(+, ·, 0, 1;<) of signature (2, 2, 0, 0; 2)

binary function symbols + and · (for integer addition and multiplication)
constants 0 and 1 (for integers 0 and 1)
a binary relation symbol < (for the less-than relation)

Assuming we are quantifying over the natural numbers we have assertions like

∀x∃ y (x < y)

∃x∀ y (x = y ∨ x < y)

∀x (x+ 0 = x)

Intuitively, these are all true.

Infinitude of Primes 15

In the language of arithmetic we can write a formula prime(x) that expresses
the assertion “x is prime”.

prime(x) ≡ 1 < x ∧ ∀u, v (x = u · v ⇒ u = 1 ∨ v = 1)

Note that x here is a free variable (not quantified over) in prime(x). So, we
can use free variables to define subsets of the domain.

We can now express the assertion “there are infinitely many primes.”

∀ z ∃x (x > z ∧ prime(x))

Warning: This is mildly misleading, FOL in general cannot express “there are
infinitely many.” The last formula works because we are in the context of
arithmetic (where we force the domain to be a Dedekind-infinite set).

Example: Fields 16

For the classical algebraic theory of fields one minimally uses a language

L(+, ·, 0, 1) of signature (2, 2, 0, 0)

binary function symbols + and · for addition and multiplication,

constants 0 and 1 for the respective neutral elements.

Of course, more functions could be added: additive inverse, subtraction,
multiplicative inverse, division. Introducing only addition and multiplication is
the minimalist approach here.

Some Formulae 17

Now consider formulae such as

∀x, y (x+ y = y + x)

∀x (x · 0 = 0)

∀x∃ z ((¬x = 0) ⇒ z · x = 1)

1 + 1 = 0

It is intuitively clear what these formulae mean.
Except for the last one, they are all true in any field. In fact, the first two hold
in any ring.
The third one is true in a field, but is false in an arbitrary ring.
And the last only holds in rings of characteristic 2. In fact, it defines unital
rings of characteristic 2 (assuming we are not in the zero ring).

Example: Boolean Algebra 18

In Boolean algebra one uses the language

L(⊔,⊓, , 0, 1) of signature (2, 2, 1, 0, 0)

So we have

binary function symbols ⊔ and ⊓ (for join and meet)
unary function symbol (for complement)
constants 0 and 1

Some formulae:

∀x, y ∃ z (x ⊔ y = z)

∃x ∀ y (x ⊓ y = 0)

∀x ∃ y (x ⊔ y = 1 ∧ x ⊓ y = 0)

Expressiveness: Induction 19

As an example of the expressiveness of FOL consider the venerable Principle of
Induction. We can express induction as a first-order formula as follows.

R(0) ∧ ∀x
(
R(x) ⇒ R(x+ 1)

)
⇒ ∀xR(x)

Here we have added another unary relation symbol R to our language. So R(x)
asserts that number x has some unspecified property.

If we wanted to quantify over all relations R we would need more horse power,
say, second-order logic.

∀R
(
R(0) ∧ ∀x

(
R(x) ⇒ R(x+ 1)

)
⇒ ∀xR(x)

)

Keeping it Simple 20

Second-order logic is dangerously close to set theory: exactly what are we
quantifying over in ∀R ?

The standard workaround is to use an axiom schema instead:

φ(0) ∧ ∀x
(
φ(x) ⇒ φ(x+ 1)

)
⇒ ∀xφ(x)

Here φ(x) is any formula of arithmetic with free variable x.

This works fine in basic applications, say, in number theory, but is nowhere near
as powerful as second-order.

1 First-Order Logic

2 Syntax

3 Model Theory

4 Proof Theory

More Syntax 22

While we are not interested in writing a parser or theorem prover, we still need
to be a bit more careful about the syntax of our language of FOL. The
components of a formula can be organized into a taxonomy like so:

variables, constants and terms,
equations,
atomic formulae,
propositional connectives, and
quantifiers.

Every programming language has a defining report (which no one ever reads,
other than perhaps compiler writers, it’s the document that uses the imperative
“shall” a lot), so think of this as the defining report for FOL.

The quantification part is what really matters here; propositional connectives
are the same as in propositional logic while terms and equations are the same
as in equational logic.

Graded Alphabet 23

We need a supply of variables Var as well as function symbols and predicate
symbols. These form a graded alphabet Σ = Σ0 ∪Σ1. where every function
symbol and relation symbol has a fixed number of arguments, determined by a
arity map:

ar : Σ → N

We write L(Σ) for the language constructed from signature Σ.
Function symbols of arity 0 are constants and relation symbols of arity 0 are
Boolean values (true or false) and will always be written ⊤ and ⊥.

In any concrete application, Σ will be finite. However, in the literature you will
often find a big system approach that introduces a countable supply of function
and relation symbols for each arity. For our purposes a signature
custom-designed for a particular application is more helpful.

Syntax: Terms 24

Definition
The set T = T (Σ) = T (Var, Σ) of all terms is defined by

Every variable is a term.
If f is an n-ary function symbol, and t1, . . . , tn are terms, n ≥ 0, then
f(t1, . . . , tn) is also a term.

A ground term is a term that contains no variables.

Note that f() is a term for each constant (0-ary function symbol) f . For
clarity, we write a, b, c and the like for constants.

The idea is that every ground term corresponds to a specific element in the
underlying structure. For arbitrary terms we first have to replace all variables
by constants. For example, in arithmetic the term (1 + 1 + 1) · (1 + 1)
corresponds to the natural number 6. We could introduce constants for all the
natural numbers, but there is no need to do so: we can build a corresponding
term from the constant 1 and the binary operation +.

Syntax: Atomic Formulae 25

Given a few terms, we can apply a predicate to get a basic assertion (like
x+ 4 < y).

Definition
An atomic formula is an expression of the form

R(t1, . . . , tn)

where R is an n-ary relation symbol, and the t1, . . . , tn are terms.

These are basically the atomic assertions in propositional logic: once we have
values for the variables that might appear in the terms, an atomic formula can
be evaluated to true or false.

But note that we do need bindings for the variables, R(x, y) per se has no
truth value.

Equality 26

Equality plays a special role in our setup, we include the binary relation symbol
= in our language, with the intent that

s = t

should be interpreted as: the terms s and t denote the same element.

Thus, unlike with all the other relation symbols, the meaning of = is fixed once
and for all: it is always interpreted as equality. This is different from all other
relation symbols that can have various different interpretations.

It is also interesting to consider systems without equality.

Fragments 27

The system just described is first-order logic with equality.

One can also consider first-order logic without equality (there is no direct way
of asserting equality of terms).

Lastly, one can consider the fragment of FOL that has no function symbols nor
equality, only relations (the actual predicate logic).

In the presence of equality, one can still fake functions to a degree by
considering relations F such that

∀x ∃ y F (x, y) ∧ ∀x, u, v (F (x, u) ∧ F (x, v) ⇒ u = v)

Formulae 28

Definition
The set of formulae of FOL is defined by

Every atomic formula is a is a formula.

If φ and ψ are formulae, so are (¬φ), (φ ∧ ψ), (φ ∨ ψ), and (φ ⇒ ψ).

If φ is a formula and x a variable, then (∃xφ) and (∀xφ) are also for-
mulae.

So these are compound formulae versus the atomic formulae from above.

The φ in (∃xφ) and (∀xφ) is called the matrix of the formula.

Note that a term by itself is not a formula: it denotes an element (if it has no
free variables) rather than a truth value.

Preserving Sanity 29

Our definition establishes a strict syntax, the kind that makes it easy for a
parser to analyze an expression.

Unfortunately, for human readers, this is a problem, legibility is quite poor. So,
we also have a sloppy syntax that makes things easy to read and comprehend.

For example, we omit unnecessary parentheses and write formulae such as

∀x (R(x) ⇒ ∃ y S(x, y))

The intended meaning is: “For any x, if x has property R, then there exists a y
such that x and y are related by S.”

Binary relation and function symbols are often written in infix notation, using
standard mathematical symbols: As usual, one often uses infix notation for
terms and atomic formulae: x+ y < z is easier to read than <(+(x, y), z).

One often contracts quantifiers of the same kind into one block.

∀x∀ y ∃ z (= (+(x, z), y))

Sloppy, but eminently readable, style

∀x, y ∃ z (x+ z = y)

Rant: Quantifiers 30

When it comes to rendering quantifiers in math text, some authors appear to
suffer from temporary insanity and try to make things as difficult to parse as
humanly possible. For example:

(∀x)(∀ y)(∃ z)f(x, y) = g(z)

or, even worse,

∀x , ∀ y , ∃ z , f(x, y) = g(z)

as opposed to

∀x, y ∃ z
(
f(x, y) = g(z)

)

Implication 31

In many texts implication is written as φ → ψ.

Alas, this notation becomes less than ideal when we also deal with functions or
relations f : A → B or in the context of diagrams.

We will write φ ⇒ ψ if we want to make sure the arrow is understood as
implication.

Other old-fashioned notation: C(φ,ψ) and φ ⊃ ψ.

We assume that implication associates to the right, so

φ ⇒ ψ ⇒ χ means φ ⇒ (ψ ⇒ χ)

Sentences 32

Definition
A variable that is not in the range of a quantifier is free or unbound (as
opposed to bound). We write FV(φ) for the set of free variables in φ. A
formula without free variables is closed, or a sentence.

One often indicates free variables like so:

φ(x, y) x and y may be free
∃xφ(x, y) only y may be free

∀ y ∃xφ(x, y) closed.

Substitutions of terms for free variables are indicated like so:

φ(s, t) replace x by s, y by t
φ[s/x, t/y] replace x by s, y by t

We will explain shortly how to compute the truth value of a sentence.

Displaying Free Variables 33

The notation
φ(x1, . . . , xn)

only expresses the fact that FV(φ) ⊆ {x1, . . . , xn}.

Note: this does not mean that they all actually occur, some or even all of them
may be missing. This turns out to be preferable over the alternative.

This is really no different from saying that 2x2 − y is a polynomial in variables
x, y and z.

Exercise
Construct an algorithm that computes free variables and determines the scope
of quantifiers.

Interpreting Free Variables 34

A priori, a formula φ(x) with a free variable x has no truth value associated
with it: we need to replace x by a ground term to be able to evaluate.

However, taking inspiration from equational logic, it is convenient to define the
truth value a formula with free variables to be the same as its universal closure:
put universal quantifiers in front, one for each free variable.

∀x, y, z
(
x ∗ (y ∗ z) = (x ∗ y) ∗ z

)
is somewhat less elegant and harder to read than

x ∗ (y ∗ z) = (x ∗ y) ∗ z

In algebra, the latter form is much preferred.

Clashing Variables 35

Note that according to our definition it is perfectly agreeable to quantify over
an already bound variable. To make the formula legible one then has to rename
variables. For practical reasons it is best to simply disallow clashes between free
and bound variables.

∀x
(
R(x) ∧ ∃x∀ y S(x, y)

)
Better: rename the x inside

∀x
(
R(x) ∧ ∃ z ∀ y S(z, y)

)
These issues are very similar to problems that arise in programming languages
(global and local variables, scoping issues). They need to be addressed but are
not of central importance.

Getting Serious 36

Our definition of a formula of FOL is sufficiently precise to reason about the
logic, but it is still a bit vague if we try to actually implement an algorithm that
operates on these formulae.

Exercise
Explain how to implement formulae in FOL. Describe the data structure and
make sure that it can be manipulated in a reasonable way.

Exercise
Give a precise definition of free and bound variables by induction on the
buildup of the formula.

Exercise
Implement a renaming algorithm that removes potential scoping clashes in the
variables of a formula.

Exercise
Implement a substituting algorithm that replaces a free variable in a formula by
a term.

1 First-Order Logic

2 Syntax

3 Model Theory

4 Proof Theory

Semantics: Structures 38

So what exactly is the context that we need to interpret a formula in FOL,
what additional information do we need to be able to check whether a formula
is true of false?

Fix a language L = L(Σ) of some specific signature.

Definition
A (first-order) structure is a set together with a collection of functions and
relations on that set. The signature of a first-order structure is the list of arities
of its functions and relations.

In order to interpret formulae in L(Σ) over a structure, the signatures have to
match: for each function symbol we have an actual function, and for each
relation symbol we have an actual relation.

FO Structures 39

So a first-order structure in general looks like so:

A = ⟨A; f1, f2, . . . , R1, R2, . . .⟩

The set A is the carrier set of the structure.

In addition, we have a list of functions on A, and a list of relations on A (all of
the right arity).

In practice, unary and binary functions and relations are by far the most
important in applications, but higher arities may occur.

Interpretations 40

Given a formula and a structure of the same signature we can associate the
function and relation symbols in the formula with real functions and relations in
a structure (of the same arity).

f function symbol ; fA a function in A

R function symbol ; RA a relation in A

Given this interpretation of function and relation symbols over A, we can
determine whether a formula holds true over A.
This is very different from trying to establish universal truth. All we are doing
here is to confirm that, in the context of a particular structure, a certain
formula is valid. As it turns out, this is all that is really needed in the real world.
Of course, when the structure changes the formula may well become false.

Example 1: Red and Green 41

Here is a little toy formula that we will use as an example:

Φ ≡ ∀x
(
G(x) ⇒ R(f(x))

)
Here f is a unary function symbol, and G and R are unary predicates (so the
signature is (1; 1, 1)).

What does this formula mean intuitively? Suppose we have a suitable structure

A = ⟨A; fA, GA, RA⟩

where A is some set, fA : A → A and GA, RA ⊆ A.

Intuitively, think of G as meaning green and R as meaning red. The Φ holds in
such a structure if every green point maps to a red point under f .

Structures 42

More Structures 43

Infinite Structures 44

How about

A = N

f(x) = x+ 2

G is prime

R is odd

This is an entirely different can of worms. Unlike the previous examples, this
one is infinite and one needs to have some basic knowledge of arithmetic to
check that Φ is false.

How about this formula:

∀x∃ y
(
x < y ∧G(y) ∧G(f(y))

)

Arithmetic 45

More generally, to deal with basic arithmetic we use the language
L(+, ·, 0, 1;<) with signature (2, 2, 0, 0; 2).

We can interpret a formula in this language over any structure of the same
type. Of course, the most important structure for arithmetic is

N = ⟨N; +, ·, 0, 1, <⟩

the set of natural numbers together with the standard operations but we will
see that there are others.

Note the slight abuse of notation here (as is standard practice). More precise
would be to write: The function symbol + is interpreted by +N, the standard
operation of addition of natural numbers.
For our purposes there is no gain in being quite so careful.

Some Arithmetical Formulae 46

With this interpretation over N, the formula

0 < 1 is true
∀x∃ y (x < y) is true
∀x, y (x < y ⇒ ∃ z (x < z ∧ z < y)) is false

How about the primality formula

φ(x) ≡ 1 < x ∧ ∀ y, z (x = y · z ⇒ y = 1 ∨ z = 1)

This formula has a free variable x, so we need to bind x (replace it by a term)
before we can determine truth.
We use the numeral n = 1 + 1 + . . .+ 1︸ ︷︷ ︸

n times

to represent the natural number n as

a term. The set of primes is then

{n | φ(n) holds in N }.

Numerals 47

Strictly speaking, n = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

is also sloppy, we really should define

0 = 0 the term, not the number
n+1 = +(n, 1)

by induction, so that n is a bonified term of our system.

One often avoids this level of precision, but for any algorithmic treatment there
is no way around it.

The Reals 48

Suppose we interpret our formulae over the structure of the real numbers
instead. This is possible since we are dealing with the same signature
(2, 2, 0, 0; 2):

R = ⟨R; +, ·, 0, 1;<⟩

Now + refers to addition of reals, 0 is the real number zero, and so on. These
operations are much more complicated, but as far as our formula is concerned
all that matters is that they have the right arity.

Over the reals the following density formula holds:

θ ≡ ∀x, y (x < y ⇒ ∃ z (x < z ∧ z < y)

It also holds over Q, but over Z or N it is clearly false.

Validity, Informally 49

We can now give a first informal definition of truth or validity.

Definition
A formula of first-order logic is valid or true if it holds over any structure of the
appropriate signature.

Dire Warning: We require to formula to hold over any first-order structure of
the appropriate signature (so we can interpret the function and relation
symbols).

Any structure whatsoever, not just one that you are particularly fond of.

So the formula ∀x, y (x ∗ y = y ∗ x) is not valid, but it can be used as an
axiom to filter out commutative operations.

Not Nothing 50

It is standard to assume that the carrier set of a first-order structure is not
empty. This has the effect that the formula

∃x (x = x)

is valid. Experience shows that this is more convenient than allowing empty
structures.

For example, ∀x (x ̸= x) is true in the empty structure, which looks strange.

Also, ∀x (x ̸= x) ∧ ⊥ has prenex normal form ∀x (x ̸= x∧ ⊥), but they are not
equivalent over the empty structure: the former is false, the latter is true.

Some Valid Formulae 51

It is clear that a formula like φ ⇒ φ is valid. In fact, if we replace the
propositional variables in any tautology by arbitrary FOL sentences, we obtain a
valid sentence. More precisely, let

φ(p1, p2, . . . , pn)

be a tautology with propositional variables p1, p2, . . . , pn. Let ψ1, . . . , ψn be
arbitrary sentences of FOL. Then

φ(ψ1, ψ2, . . . , ψn)

is a valid sentence of FOL. True, but not particularly interesting.

Satisfiability, Informally 52

Again in analogy to propositional logic we can define satisfiability.

Definition
A formula of FOL is satisfiable if it is true for some interpretation of the
variables, functions and relations. It is a contradiction if it is true for no
interpretation of the variables, functions and relations.

For example, in the language of binary relations the formula

x R x ∧ (x R y ∧ y R z ⇒ x R z)

is satisfied exactly by any structure A that carries a reflexive transitive relation
RA. On the other hand,

∀x (x ̸= c)

where c is a constant is a contradiction: we can interpret x as the element in
the structure denoted by c in which case equality holds.

Quantifier Manipulations 53

Slightly more complicated examples for valid formulae are

∀x∀ y φ(x, y) ⇒ ∀ y ∀xφ(x, y)
∃x∃ y φ(x, y) ⇒ ∃ y ∃xφ(x, y)
∃x∀ y φ(x, y) ⇒ ∀ y ∃xφ(x, y)

Note, though, that the following is not valid:

∀x∃ y φ(x, y) ⇒ ∃ y ∀xφ(x, y)

Exercise
Verify that the first three formulae are true and come up with an example that
shows that the last one is not.

Counting 54

Another good source of valid formulae are assertions about the number of
elements in the underlying structure. How do we say “there are exactly n
elements in the ground set” in FOL? First, a formula which states that there
are at most n elements.

Cnt≤n ≡ ∃x1, . . . , xn ∀ y (y = x1 ∨ . . . ∨ y = xn)

Second, a formula which states that there are at least n elements.

Cnt≥n ≡ ∃x1, . . . , xn (x1 ̸= x2 ∧ x1 ̸= x3 ∧ . . . ∧ xn−1 ̸= xn)

All these formulae are clearly satisfiable. The conjunction Cnt≤n ∧ Cnt≥n pins
down the cardinality to exactly n. Also, a formula

Cnt≥n ⇒ Cnt≥m

is valid whenever m ≤ n.

Infinity 55

How about a formula that states that there are infinitely many elements?

Cnt≥1 ∧ Cnt≥2 ∧ . . . ∧ Cnt≥n ∧ . . .

does not work since it is not a finite formula. There are logics where this is
allowed, but not in our setting. The attempt

∀nCnt≥n

also fails; we cannot quantify over formulae in our logic.

Exercise
Explain precisely why these “formulae” are not admissible in FOL.

Dedekind’s Trick 56

After some more fruitless attempts one might suspect that the statement
“there are infinitely many thingies” cannot be expressed with a single formula
in FOL (the ci ̸= cj trick requires infinitely many formulae).

Wrong! Let f be a unary function symbol and c a constant. Consider

φ ≡ ∀x (f(x) ̸= c) ∧ ∀x, y (f(x) = f(y) ⇒ x = y).

So φ states that f is not surjective but injective. Hence in any interpretation
that makes φ true the carrier set must be infinite.

Exercise
Use a total order to produce another formulae in FOL that forces the ground
set to be infinite.

And the Entscheidungsproblem 57

Again, there are natural decision problems associated with this classification.

Problem: Validity
Instance: A FOL formula φ.
Question: Is φ valid?

Problem: Satisfiability
Instance: A FOL formula φ.
Question: Is φ satisfiable?

As usual, there is the search version of Satisfiability: we would like to construct
a satisfying interpretation if one exists. Note that this may well entail the
construction of an infinite structure.

As one might suspect from the few examples, these problems are much harder
in FOL than in propositional/equational logic and will turn out to be highly
undecidable in general.

Model Checking 58

In computer science one is interested in the following version of the
Entscheidungsproblem, usually called the model checking problem. We are
dealing with FOL here, other logics are more important in typical applications.

Problem: Model Checking
Instance: A FO formula φ, a FO structure A.
Question: Is φ true over A?

Ideally we would like to have an algorithm ValidQ(A, φ) that solves the
problem. Alas, there are two major issues:

In general, model checking must be undecidable.

φ is easy to specify as a data structure, but it is entirely unclear how we
could deal with A. As written, the problem makes no sense.

Defining Validity 59

Time to give a precise definition of validity and satisfiability. We begin by
defining assignments in the context of FOL.

Definition
An assignment or valuation (over a structure A) associates variables of the
language with elements in the ground set A.

Given an assignment σ : Var → A , we can associate an element σ(t) in A with
each term t.

t = x: then σ(t) = σ(x)
t = f(r1, . . . , rn): then σ(t) = fA(σ(r1), . . . , σ(rn))

Example
Over N let σ(x) = 3. Then σ(x · (1 + 1))) = 6 whereas σ(x) = 0 produces
σ(x · (1 + 1))) = 0.

Atomic Formulae 60

Once we have an assignment for all the free variables in an atomic formula we
can determine a truth value for it.

Definition
Let σ be an assignment over a structure A and φ = R(t1, . . . , tn) an atomic
formula. Define the truth value of φ (under σ over A) to be

Aσ(φ) =
{

tt if RA(σ(t1), . . . , σ(tn)) holds,
ff otherwise.

Example
Over the natural numbers N suppose σ(x) = 0 and σ(y) = 1. Then

Nσ(x+ y < 1 + 1) = Nσ(0 + 1 < 1 + 1) = tt

but for σ(x) = σ(y) = 1 we get

Nσ(x+ y < 1 + 1) = Nσ(1 + 1 < 1 + 1) = ff

Logical Connectives 61

Once we have a truth value for atomic formulae, we can extend this evaluation
to compound formulae without quantifiers.

Definition (Propositional Connectives)
φ Aσ(φ)
ψ ∧ χ Hand(Aσ(ψ),Aσ(χ))
ψ ∨ χ Hor(Aσ(ψ),Aσ(χ))
¬ψ Hnot(Aσ(ψ))

Here the functions Hand, Hor and Hnot are Boolean functions of arity 2, and
Hnot is Boolean function of arity 1 (expressing logical and, or and not).

We are using the fact that formulae form a recursive datatype, so we can define
things by induction.

Example 62

Suppose σ(x) = 0 and σ(y) = 1. Then

Nσ(x < y ∧ y < x) = Hand(Nσ(x < y),Nσ(y < x))
= Hand(N(0 < 1),N(1 < 0))
= Hand(tt,ff)
= ff

This is just a simple recursive computation using a bit of table lookup.

Quantifiers 63

For an assignment σ, let us write σ[a/x] for the assignment that is the same as
σ everywhere, except that σ[a/x](x) = a. Think of this as substituting “a for
x” in σ.

Definition (Quantifiers)

φ = ∃xψ:
Then Aσ(φ) = tt if there is an a in A such that Aσ[a/x](ψ) = tt.

φ = ∀xψ:
Then Aσ(φ) = tt if for all a in A Aσ[a/x](ψ) = tt.

Note that σ only needs to be defined on the free variables of φ to produce a
truth value for φ, the values anywhere else do not matter. If φ is a sentence, σ
can be totally undefined.

Validity and Models 64

Definition (Validity)
A formula φ is valid in A under assignment σ if Aσ(φ) = tt.
A formula φ is valid in A if it is valid in A for all assignments σ. The structure
A is then said to be a model for φ or to satisfy φ.
A sentence is valid (or true) if it is valid over all structures (of the appropriate
signature).

Notation:

A |=σ φ A |= φ |= φ

One uses the same notation for sets of formulae Γ . So A |= Γ means that
A |= φ for all φ ∈ Γ .

Note the condition for validity: the formula has to hold in all structures.

Satisfiability 65

Definition
A formula is satisfiable if there is some structure A and some assignment σ for
all the free variables in φ such that A |=σ φ.

In other words, the existentially quantified formula

∃x1, . . . , xn φ(x1, . . . , xn)

has a model, where x1, . . . , xn are all the free variables of φ.
In shorthand: ∃ xφ(x).

This is analogous to validity where we insist that ∀x1, . . . , xn φ(x1, . . . , xn)
holds, or ∀ xφ(x) in compact notation.
It is often more convenient to leave off the universal quantifiers.

Isn’t this all circular? 66

The definitions of truth given here is due to A. Tarski (two seminal papers, one
in 1933 and a second one in 1956, with R. Vaught).

A frequent objection to this approach is that we are using “for all” to define
what a universal quantifier means.

True, but the formulae in our logic are just syntactic objects, data structures in
some rectype and can be represented, say, as strings. Their meaning is defined
in terms of first-order structures, which live in the real world of mathematics
and TCS.

Occasionally we can even compute the truth value of a formula: we need to be
able to perform certain operations in the structure: evaluate fA, loop over all
elements, search over all elements, . . . For finite structures given by, say, lookup
tables, this works fine (at least if we ignore efficiency). For infinite structures,
we run into major problems.

Naming Things 67

Suppose A is a structure of some signature Σ. In order to describe A it is often
helpful to augment the language L(Σ) by constant symbols ca for each
element a in the carrier set A of A, obtaining a new signature ΣA.
A is naturally also a structure of signature ΣA.

This step is not necessary when there already are terms in the language for all
the elements of the structure. E.g., in arithmetic we can denote every natural
number by a ground term

n = 1 + 1 + . . .+ 1

This works since we are dealing with the naturals, but in general there is no
reason why every element in a structure should be denoted by a term.

Set Theory versus Computation 68

For example, suppose we want to deal with the reals. The standard language
has constants for 0 and 1 but nothing else.

R = ⟨R; +, ·, 0, 1;<⟩

Using the numeral trick, we can obtain terms for rationals (at least if we add
subtraction and division to our signature), but no more.

Just to write down all available facts about R we need to add uncountably
many constants, one for each real other than the rationals. This is no problem
at all in set theory.

But it wrecks the language: the new constants are not finitary data structures.
We cannot even build a parser.

The Diagram of a Structure 69

Definition
The (atomic) diagram of a structure of some fixed signature is the set of all
atomic sentences and their negations in L(ΣA) that are valid in A.
In symbols: diagA.

The point is that the validity of any formula over A is completely determined
by diagA: no other information is used in our definition of truth. Hence our
putative model checking algorithm could look like this:

ValidQ(diagA, φ)

If the underlying structure A is finite (and thus the diagram is essentially
finite), then we can actually perform this computation: it is just recursion and
copious table lookups. In fact, ValidQ will be primitive recursive given any
reasonable coding.

Cayley Tables 70

How do we represent the atomic diagram diagA? Given enough constants we
can simply write down a table.

E.g., for a unary function symbol f we can use a table with entries ca and cb

provided that b = fA(a). Each entry corresponds to an identity f(ca) = cb in
the diagram.

For binary function symbols we get a classical Cayley style “multiplication
table”, and higher dimensional tables for functions of higher arity.

Relations can be handled by similar tables with entries in B. This corresponds
to the familiar interpretation of a relation R ⊆ Ak as a function R : Ak → B .

Finite Structures 71

So, the whole diagram is just a bunch of tables using special constants for all
elements in the structure and Boolean values. For small finite structures this is
a perfectly good representation. (Though in reality it only works when the
structures are not too large).

Theorem
Model checking for finite structures is decidable.

In fact, it is easy to see that the algorithm is primitive recursive. Unfortunately,
from a computational complexity perspective this is not exactly very useful.

Infinite Structures 72

Pushing ahead into the realm of infinite structures things become much more
complicated. If the carrier set is uncountable our machinery from classical
computability theory simply does not apply—the individual elements are not
finitary objects and we have no handle.

However, if the carrier set is countable, computability theory does apply and we
can use it to measure the complexity of the structure.

Definition
The (complete) diagram is the collection of all sentences in L(ΣA) that are
valid in A.
A is computable if its atomic diagram is decidable.
A is decidable if its complete diagram is decidable.

In symbols: diagc A.

Atomic Diagram Arithmetic 73

In the atomic diagram of N we have lots of truly exciting facts such as

0 + 0 = 0, 0 + 1 = 1, 0 + 2 = 2, . . . , 1 + 0 = 1, 1 + 1 = 2, 1 + 2 = 3, . . . ,
17 + 19 = 36, . . .

0 · 0 = 0, 0 · 1 = 0, 0 · 2 = 0, . . . , 1 · 0 = 0, 1 · 1 = 1, 1 · 2 = 2, . . . ,
17 · 19 = 323, . . .

0 < 1, 0 < 2, 0 < 3, . . . , 1 < 2, 1 < 3, 1 < 4, . . . , 17 < 19, . . .

And more:
2 + 3 < 2 · 3

Complete Diagram Arithmetic 74

In the complete diagram of N we have the whole atomic diagram, plus
formulae like

∀x, y (x+ y = y + x)
∀x, y, z (x+ (y + z) = (x+ y) + z)
∀x∃ y (x < y)
∃x∀ y ¬(y < x)

∀x∃ y
(
x < y ∧ prime(y)

)
But we do not know whether the next formula is in the diagram:

∀x∃ y
(
x < y ∧ prime(y) ∧ prime(y + 2)

)

Two Critical Examples 75

The structure N of arithmetic is computable, but not decidable, even for
annoyingly simple formulae involving just a single existential quantifier.

In fact, diagc N is highly undecidable, an infinite hierarchy away from decidable.

The structure R of the reals is decidable, but not computable.

This may sound mighty strange, but note that we are only dealing with
first-order formulae over L(+, ·, 0, 1;<). Surprisingly, for these one can check
validity over R, due to a famous theorem by A. Tarski from 1951 (uses
quantifier elimination).

There is a huge literature on how to make this decision algorithm reasonably
efficient.

Wild Idea 76

To get more interesting examples where model checking works, how about the
following:

Use structures where the carrier set and the operations are all
specified by finite state machines.

So we have natural data structures that represent these so-called automatic
structures.

One might suspect that they are fairly feeble, but the are actually quite
powerful. More next time.

1 First-Order Logic

2 Syntax

3 Model Theory

4 Proof Theory

Truth 78

Recall our notion of validity: φ is valid iff A |= φ for all structures A of the
right signature. In other words, we can interpret the meaning of the non-logical
symbols any which way we like. The meaning of the logical symbols is fixed,
however, ∧ means and, basta.

Very often, one is instead interested in truth over a single structure. For
example, in arithmetic one wants to know whether N |= φ.

Is this a bug or a feature for first-order logic?

Proofs 79

We are not going to get involved with technical details, but one of the great
features of first-order logic is that it has a very nice proof theory.

One can set up a few proof rules that encapsulate the kind of reasoning that is
used (in an informal manner) in all mathematical proofs. For example, here are
some possible rules for propositional logic:

expansion φ

ψ ∨ φ

contraction φ ∨ φ

φ

modus ponens φ φ ⇒ ψ

ψ

Note that this is really just so much wordprocessing.

Quantification 80

To handle quantifiers, one needs rules along the lines of

ϕ(t)
∃xϕ(x)

(∃i)
∃xϕ(x)
ϕ(c)

(∃e)

ϕ(c)
∀xϕ(x)

(∀i)
∀xϕ(x)
ϕ(t)

(∀e)

where x is a variable, c a constant, and t a term.

Warning: While these rules are correct in spirit, as stated they are not sound.
We need some additional technical conditions.

Provability 81

At any rate, using a collection of proof rules we can define a notion of
provability or derivability, written Γ ⊢ φ, meaning:

φ can be derived from the standard axioms of logic and Γ ,
using only a few given proof rules.

This is also called syntactic entailment. It turns out to be an accurate
representation of what mathematicians mean by “proof.” Of course, this is not
how proofs are written by the “working mathematician,” but it seems that they
could be rephrased this way.

Proof and Computability 82

A single step in a proof φ ⊢1 ψ is brutally simple, easily primitive recursive.
Suppose we have a decidable set of axioms Γ , and define the theory of Γ to be
the set of theorems provable from Γ :

Th(Γ) = {φ | Γ ⊢ φ }

Then Th(Γ) is semidecidable. This is easiest to see from the perspective a
recursively enumerability: we can systematically generate all possible proofs in
some natural order.

Alas, that’s where it ends: for many Γ the theory is not decidable.

For example, the standard group axioms produce an undecidable theory.
On the other hand, Abelian groups produce a decidable theory.

Axioms 83

In pure mathematical logic, it is perfectly fine to consider sets of axioms Γ that
are arbitrarily complicated: undecidable or even uncountable (using an
uncountable language).

But in the computational universe we will insist that any reasonable set of
axioms is decidable: otherwise we cannot check whether a given argument is a
correct proof. All standard axiom systems of math are easily decidable. So the
theories are semidecidable.

Note we still get a semidecidable theory even when Γ is only semidecidable,
but that’s already pushing things a bit. Civilized axioms should not be based
on the Halting problem.

Semantic Entailment 84

On the side of structures and models, we have already seen a detailed definition
of the notion of semantic entailment or semantic consequence, in symbols
Γ |= φ, meaning that for all structures A:

A |= Γ implies A |= φ.

For example, if Γ are the standard group axioms, then the formula

φ ≡
(
(x ∗ y)−1 = y−1 ∗ x−1)

is a consequence of Γ . In this case, it is not hard to see that indeed Γ ⊢ φ (in
fact, this does not even require FOL, a less complicated equational logic is
good enough).

Example 85

Let

(inj) ≡ ∀x, y
(
f(x) = f(y) ⇒ x = y

)
(surj) ≡ ∀x ∃ y

(
f(y) = x

)
Then for all n

(inj),Cnt=n |= (surj)

(surj),Cnt=n |= (inj)

(inj),¬(surj) |= ¬Cnt=n

The Miracle 86

So proofs are relatively simple syntactic objects. Semantic entailment, on the
other hand, inevitably involves set theory and seems very complicated: we have
to deal with all FO structures of some signature. How are we supposed to know
what these look like?

Theorem (Completeness Theorem, Gödel 1930)
First-order logic is sound and complete:

Γ ⊢ φ ⇐⇒ Γ |= φ

This looked like a huge step forward in Hilbert’s dream: all questions about
structures can be solved by looking at (strictly finitary, syntactic) proofs.

The Catastrophe 87

But if we consider particular structures, such as N, then this connection
collapses.

For example, Dedekind-Peano Arithmetic, the standard axiom system for
elementary arithmetic, cannot prove all sentences φ such that N |= φ.

Worse, Gödel showed that in his famous Incompleteness Theorem that
Dedekind and Peano did not just make a mistake: any attempt at axiomatizing
arithmetic similarly fails: there are always true statements of arithmetic that
are not provable in a particular FOL axiom system.

Again: we can’t do
Γ = all φ true in N

since this set of “axioms” is highly undecidable.

Compactness 88

Gödel’s completeness theorem has a slightly unnerving consequence:

Theorem (Compactness Theorem, Gödel 1930)
Γ has a model if, and only, if every finite Γ0 ⊆ Γ has a model.

This is positively wild, intuitively one would expect to be able to exploit
infinitely many axioms (say, with infinitely many constants) to construct weird
conditions, when every finite subset is perfectly harmless.

Alas, it is only the finite subsets that matter as far as the existence of a model
is concerned.

Application: Finite Structures 89

Lemma
The class of all finite structures (of some signature) is not axiomatizable.

For assume that Γ is some axiom system that characterizes finite structures.
Hence Γ has arbitrarily large finite models. But then Γ already must have an
infinite model.

To see this, add new constants ci, i ∈ N, to the language and add new axioms

ci ̸= cj for i < j

to Γ to obtain an extension Γ ′.

Every finite subset of Γ ′ has a model; by compactness Γ ′ has a model which
must be infinite by choice of the additional axioms.

Application: Infinite Structures 90

Lemma
The class of all infinite structures (of some signature) is not finitely
axiomatizable.

For otherwise the class of finite structures would also be axiomatizable: a finite
set of axioms is like a single formula: just take the conjunction of all the
axioms. That single formula can be negated.

But note that the class of infinite structures is FO definable: we can use
infinitely many sentences of the form “there are at least n elements”.

Cnt≥n ≡ ∃x1, . . . , xn (x1 ̸= x2 ∧ x1 ̸= x3 ∧ . . . ∧ xn−1 ̸= xn)

Aside: Nonstandard Models 91

Gödel’s completeness theorem is perfectly correct, so why does Dedekind-Peano
arithmetic fail? It seems to describe the properties of N very nicely.

But: we can use the construction from slide 89 to show that there are strange
models of the Dedekind-Peano axioms that look very different from N: they
contain “infinitely large natural numbers.” These are called non-standard
models and give rise to non-standard arithmetic.

The weird-but-true assertions that Peano arithmetic cannot prove fail in these
weird, unintended models. In a sense, first-order logic simply fails at the task of
pinning down arithmetic.

FOL is much better at describing whole classes of structures. For example, the
class of all groups is no problem.

Nonstandard Naturals 92

N . . .Z . . .Z . . .Z . . .︸ ︷︷ ︸
Q

With a little effort one can show that a nonstandard model starts with a copy
of the ordinary naturals, followed by Q-many copies of the ordinary integers.
You’re welcome.

Nonstandard Models are Great 93

One can also produce non-standard models of real arithmetic, often written R⋆.

Now suppose N ∈ R⋆ is a “natural number” that has the property that

1+1+ . . .+1+1︸ ︷︷ ︸
n

< N

for all actual natural numbers n. The compactness argument used to construct
R⋆ produces these things automatically.

Then δ = 1/N is a perfectly good infinitesimal, realizing Leibniz’s dream—just
300 years too late.

Exercises 94

Exercise
Try to axiomatize fields, finite fields, fields of characteristic p or 0, ordered
fields, algebraically closed fields. Try the reals.

Exercise
Use similar arguments as on slide 89 to show that there is an infinite field of
characteristic 2. By contrast, give an algebraic construction of such a field.

Exercise
Fill in the details in the proof on slide 90. Why is it critical that the axiom
system is finite?

	First-Order Logic
	Syntax
	Model Theory
	Proof Theory

