
CDM
Pólya-Redfield Theory

Klaus Sutner

Carnegie Mellon University
Spring 2023

1 Some Applications

2 Pólya-Redfield

3 Lamplighters

Warm-Up: Flipping Bits 2

Here is a trivial counting problem, but it provides on opportunity to use the
new machinery.
We consider binary lists (bitvectors) of length n.
We want to identify two lists when one is obtained from the other by flipping
all bits.

To apply Burnside let

X = 2n

G = {1, s}

where s means flip all bits. Hence s2 = 1 and G really is a group.
In fact, G is isomorphic to Z2 but let’s use the multiplicative notation.

Compute Invariants 3

We need to calculate the invariant sets, which is easy in this case.

X1 = X

Xs = ∅

Hence
N = 1

2(2n + 0) = 2n−1

So each orbit has the form {x, s x} and has size 2.

Not very exciting, but at least it’s correct.

Application 1: Cellular Automata 4

In the context of cellular automata one encounters the following problem: we
have binary lists of length n = 2k encoding the local functions.

Two lists L and K are equivalent if K can be obtained from L by any
combination of reversing the list, or flipping all bits.

To apply Burnside let

X = 2n

G = ⟨r, s
∣∣ r2 = s2 = 1, rs = sr⟩ = {1, r, s, rs}

where r means reversal, s means flip all bits. Note that G is isomorphic to
Z2 × Z2, the Kleinsche Vierergruppe.

The Invariants 5

Since n is even we have

X1 = X

Xr = { uuop | u ∈ 2n/2 }

Xs = ∅

Xrs = { u uop | u ∈ 2n/2 }

Hence
N = 1

4(2n + 2n/2 + 0 + 2n/2) = 2n−2 + 2n/2−1

Application 2: Coloring a Square 6

Color the corners of a square red and blue. Obviously there are 24 colorings
(our configurations).

Now suppose we do not wish to distinguish between colorings that can be
obtained from each other by rotations and reflections (our patterns).

For 2 colors and 4 vertices we can easily compute this to death, but think
about the analogous problem with c colors and n vertices.

Brute Force 7

Applying Burnside 8

So there are 6 patterns.
Let X be the set of all colorings. It is convenient to think of X as 24 (read off
the colors in clockwise order).

The patterns are exactly the orbits of x ∈ X under D4.

Hence
N = 1

8
∑

a∈D4

|Xa|.

So what are the invariant sets?

Recall D4 = {1, α, α2, α3, β, αβ, α2β, α3β}

Following the Points 9

The Invariants 10

X1 = X

Xα = Xα3 = {0000, 1111}
Xα2 = {0000, 0101, 1010, 1111}
Xβ = {0000, 0011, 1100, 1111}

Xαβ = { ijik | i, j, k ∈ 2 }
Xα2β = {0000, 0101, 1010, 1111}
Xα3β = { jiki | i, j, k ∈ 2 }

Hence
N = 1

8(16 + 2 + 4 + 2 + 4 + 8 + 4 + 8) = 6

Application 3: Chemistry 11

Let’s return to the historical root: counting chemical compounds. For example,
suppose we want to enumerate carbocycles like benzene, where 2 H atoms have
been replaced by OH groups.

bb

""bb

""

OH

OH bb

""bb

""

OH

OH

bb

""bb

""

OH

OH

bb

""bb

""

OH

OH

bb

""bb

""

OH

OH

Clearly we can model this again using something like a dihedral group.

The Model: Bracelets 12

A k-ary bracelet is a circular string of beads in k different colors: do not
distinguish between variants obtained by rotation or reflection.

It is customary to represent each equivalence class by its lexicographically first
element.

Example: all 21 ternary bracelets of length 4.

(1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 1, 3) (1, 1, 2, 2)
(1, 1, 2, 3) (1, 1, 3, 3) (1, 2, 1, 2) (1, 2, 1, 3)
(1, 2, 2, 2) (1, 2, 2, 3) (1, 2, 3, 2) (1, 2, 3, 3)
(1, 3, 1, 3) (1, 3, 2, 3) (1, 3, 3, 3) (2, 2, 2, 2)
(2, 2, 2, 3) (2, 2, 3, 3) (2, 3, 2, 3) (2, 3, 3, 3)
(3, 3, 3, 3)

Setting Things Up 13

To apply Burnside note that the group acting on X is the same as for a regular
n-gon, so we can use

X = [k]n

G = Dn

What are the invariant sets?
We need the cardinality of

Xαs = { x ∈ X | αs x = x }
Xαsβ = { x ∈ X | αsβ x = x }

For the rotations this means x0 = xs = x2s = . . . and things wrap around
modulo n.

Déjà Vu All Over Again 14

Remember the circulant function

fs : Zn −→ Zn

z 7−→ z + s mod n

We are walking around a circle of length n using stride s. fs has gcd(n, s)
distinct orbits, each of length n/ gcd(n, s).

An action fixed point αs x = x means that the list elements on each orbit of fs

are the same.

Hence there are kgcd(n,s) invariant lists for the rotation αs.

And Reflections? 15

How about the reflections αsβ? A few pictures help a lot in this case.

The pictures are for n = 12 and s = 2, 3.
It looks like there 2-cyles and possibly fixed points, nothing else.

Geometry to the Rescue 16

Remember that the motions in Dn are either rotations or reflections with
respect to a properly chosen axis, nothing else can happen.

As a consequence, for even n, there are either n/2 many 2-cyles or (n/2 − 1)
many 2-cycles and two fixed points: depending on whether the axis of the
reflection passes through vertices or the center of the sides of the n-gon.

For odd n, there are always (n − 1)/2 many 2-cyles plus one fixed point: the
reflection axis always has to pass through a vertex and the center of one side.

Exercise
Draw pictures to confirm these assertions.

Putting it All Together 17

For simplicity, assume n is odd. Then the number of k-ary necklaces of length
n is

1
2n

(∑
s<n

|Xαs | +
∑
s<n

|Xαsβ |

)
=

1
2n

(∑
s<n

kgcd(n,s) +
∑
s<n

k(n+1)/2

)
=

1
2n

∑
d|n

φ(n/d) kd + k(n+1)/2/2

where φ is Euler’s totient function: φ(m) = |Z∗
m|.

The Even Case 18

For even n the counting result is very similar.

1
2n

∑
d|n

φ(n/d) kd + (k + 1)k(n+1)/2/4

Not too pretty, but no nice simple closed form exists. Enough, though, to
compute some values. k = 2, . . . , 6 and n = 1, . . . , 8:

2 3 4 6 8 13 18 30
3 6 10 21 39 92 198 498
4 10 20 55 136 430 1300 4435
5 15 35 120 377 1505 5895 25395
6 21 56 231 888 4291 20646 107331

Back To Carbocycles 19

For our original problem, there are 13 possible molecules obtained from
substituting some H atoms by OH groups.
Let’s check.

(1, 1, 1, 1, 1, 1)
(1, 1, 1, 1, 1, 2)
(1, 1, 1, 1, 2, 2) (1, 1, 1, 2, 1, 2) (1, 1, 2, 1, 1, 2)
(1, 1, 1, 2, 2, 2) (1, 1, 2, 1, 2, 2) (1, 2, 1, 2, 1, 2)
(1, 1, 2, 2, 2, 2) (1, 2, 1, 2, 2, 2) (1, 2, 2, 1, 2, 2)
(1, 2, 2, 2, 2, 2)
(2, 2, 2, 2, 2, 2)

And Tic-Tac-Toe? 20

Can we answer the old Tic-Tac-Toe question at this point? We need to count
the number of patterns of type (3, 3, 3).
So we have

configuration space X consisting of all (3, 3, 3) placements,

dihedral group D4 acting on X.

More formally, X ⊆ {0, 1, 2}3,3 is determined by the condition that the number
of 0’s, 1’s and 2’s in a matrix is exactly 3 each.

Dire Warning: The group here is not D4, but an isomorphic
subgroup of S9: the board has 9 squares. We need to boost D4
to a permutation group of degree 9.

More Precisely . . . 21

Let us number the squares in row-major order:

1 2 3
4 5 6
7 8 9

Then clockwise rotation and reflection along the horizontal axis in cycle
notation correspond to the two permutations

((1, 3, 9, 7), (2, 6, 8, 4))
((1, 7), (2, 8), (3, 9))

These two duly generate a subgroup of S9 isomorphic to D4.

Rotations 22

Next we need to determine the cardinalities of the invariant sets Xa for all 8
group elements.

We claim that, for rotations other than the identity, all invariant sets are
empty. We only consider rotation by π/2, the other cases are entirely similar.

23

To see that Xα = ∅ note that since we only have 3 marks of each kind no
4-cycle can be invariant.

Note that this argument is a bit frail: if we were to look at different kinds of
configurations we would need to start all over again – more on this later.

Exercise
Carry out the same argument for the invariant subset of rotation α2.
Also argue that Xα2 = ∅ implies that Xα = ∅.

Reflections 24

For reflections things are more interesting. We only consider reflection along
the vertical axis, the other cases are entirely similar: the invariant set has size
6 × 6 = 36.

Final Reckoning 25

Hence the number of (3, 3, 3) Tic-Tac-Toe configurations is

1/8 (1680 + 36 + 36 + 36 + 36) = 228

Not bad, but as already mentioned, this method becomes tedious if we ask
about other types of boards. E.g., we have no idea how many patterns there
are for 2 crosses and 2 naughts. It would be nice to have a global tool to
handle all possible cases (a, b, c) where a + b + c = 9.

Exercise
Determine the largest invariant set (other than X1 of course) for all possible
configurations.

1 Some Applications

2 Pólya-Redfield

3 Lamplighters

Colors 27

Let’s push the ideas from Burnside’s lemma a little bit further to make it easier
to deal with questions involving different types of configurations. First, a slight
abstraction.
Let

V = {v1, . . . , vn }

be a set of vertices (arbitrary objects), and

C = {c1, . . . , cm }

a set of colors. A coloring is a map V → C.

We write X = V → C for the set of all colorings.

A Left Action 28

Let G be a subgroup of Sn and define the natural left action of G on X by

ρ · f = ρ ◦ f

[n] ρ−→ [n] f−→ [m]

Recall that we interpret g ◦ f the civilized way: first g, then f .

Thus, ρ ∈ G permutes the vertices, and then we apply the given coloring map.

Question:
What are the invariant elements ρ · f = f under this action?

Clearly, if ρ is just a single cycle, then f must be constant on the whole cycle.

In the general case, we consider the cycle decomposition of ρ.

Generalize 29

Write the cycle decomposition of ρ, including fixed points, as:

ρ = (v1,1, . . . , v1,q1), (v2,1, . . . , v2,q2), . . . , (vp,1, . . . , vp,qp)

Thus, the vi,j are all distinct and
∑

qi = n. We write

ccnti(ρ) = number of cycles of length i in ρ

cnum(ρ) =
∑

ccnti(ρ)

The list ccnt1(ρ), ccnt2(ρ), . . . , ccntn(ρ) is the cycle shape of ρ.

Thus, cnum(ρ) is the total number of cycles in ρ, 1 ≤ cnum(ρ) ≤ n. Also note
that

∑
i
i ccnti(ρ) = n.

Counting Invariants 30

Lemma
The cardinality of Xρ is mcnum(ρ).

Proof.
f is in Xρ iff f is constant on all the cycles of ρ.
But there are exactly m choices for the value of f on any one of the cycles.

2

Note, though, that this requires knowledge of the cycle number for each group
element.

Example: Dihedral Group 31

How about the cycle structure of all elements of Dn?

For pure rotations αk the cycle structure is easy: there are gcd(n, k) many
cycles of length n/ gcd(n, k) each.

But, as we have seen, for reflections things a more complicated; we have to
deal with 2-cycles and possibly fixed points.

For example, in an octagon there is a reflection (ignoring convention, we write
fixed points for clarity)

ρ = (1)(2, 8)(3, 7)(4, 6)(5)

Counting Orbits 32

From Burnside’s lemma we immediately have the

Corollary
The number of distinct orbits is N = 1

|G|

∑
ρ∈G

mcnum(ρ).

For example, when D4 is acting on the square we have

ρ cnum(ρ) ρ cnum(ρ)
1 4 β 2
α 1 αβ 3
α2 2 α2β 2
α3 1 α3β 3

Hence

N = 1
8(m4 + 2m3 + 3m2 + 2m).

Pentagon 33

For D5 acting on the pentagon we get

ρ cnum(ρ) ρ cnum(ρ)
1 5 β 3
α 1 αβ 3
α2 1 α2β 3
α3 1 α3β 3
α4 1 α3β 3

Hence

N = 1
10(m5 + 5m3 + 4m).

Application: Boolean Functions 34

Let us identify two Boolean functions f and g if

f(x1, x2, . . . , xk) = g(x1 ⊕ a1, x2 ⊕ a2, . . . , xk ⊕ ak)

where the ai are bits.
So ai = 0 means “leave the bit alone” and ai = 1 means “flip the bit”.

We want to count the Boolean functions modulo this equivalence.

As an example, there are 256 3-bit circuits. Flipping bits we could get the
number down to 256/8 = 32 but that would require all variants to be distinct.
So we should expect something like 50 (wild guess).

Boolean Groups 35

As we will see shortly, the relevant group here is a Boolean group.

Definition
A group is Boolean if every element other than the identity has order 2.

Hence, in a Boolean group, we have

x + x = 0

for all x.
The additive notation is justified by the following exercise.

Exercise
Show that every Boolean group is commutative.

Boolean Groups 36

Example
Let G = ⟨P(A), ∆, ∅⟩ where ∆ denotes symmetric difference:
X∆Y = (X − Y) ∪ (Y − X). Then G is a Boolean group.

Example
Any finite Boolean group arises in the following way:

2k = ⟨2k, ⊕, 0⟩

where 2k means binary lists of length k and ⊕ is point-wise exclusive or.
Note that 2k has k generators ei = (0, . . . , 0, 1, 0, . . . , 0).

Embedding into a Permutation Group 37

By Cayley’s theorem we can identify 2k with a subgroup H of S2k , the full
permutation group on 2k points.

The permutation â associated with a ∈ 2k is the map x 7→ x ⊕ a.

The function diagrams of the permutations êi for k = 4.

Whole Subgroup for k = 3 38

These are all the 8 permutations of the input values of a 3-bit circuit we can
produce by flipping some of the bits. Figure out which bits a were flipped.

Frivolous Picture 39

A list plot of the permutation of 28 arising from flipping bits 2 and 3.

Frivolous Picture 2 40

Same for flipping all bits. Somewhat surprising.

Action 41

We can think of a Boolean function f : 2k → 2 as a coloring of points V = 2k

by just two colors (so n = 2k and m = 2).

Now the Boolean group 2k acts on 2k in the obvious way:

β · x = β ⊕ x.

But then either β is the identity (in which case β · x = x) or β2 · x = x. So
the number of fixed points is either

22k

or 22k−1

Quoi? 42

For example, here is the case where k = 3 and β = 1 (flip all bits).

x 1 · x x 1 · x

000 111 100 011
001 110 101 010
010 101 110 001
011 100 111 000

For a Boolean function to be invariant, half the values are determined by the
other half. The table shows the case β = 1, where the first half determines the
second half, but it is easy to see that this actually works for any β.

Adding Up 43

Hence the total number of orbits is

1/2k
(

22k

+ (2k − 1)22k−1
)

= 22k−1−k
(

22k−1
+ 2k − 1

)

For k = 1, . . . , 5 we obtain the following values:

3, 7, 46, 4336, 134281216

Thus, flipping input bits reduces the number of ternary Boolean functions from
256 to 46. Quite remarkable.

Exercises 44

The last result deals just with flipping input bits. Of course, there are several
other natural operations we could modify a given circuit to obtain others – and
even combinations thereof, see below.

Flip the output bit.
Reverse inputs.
Rotate inputs.
Permute inputs.

Exercise
Count the number of distinct circuits for some of these operations. How hard
would it be to deal with combinations thereof?

Where Are We? 45

So far, we have a good tool to count the total number of orbits.

We even get a general formula that depends only on the group G and applies
to different kinds of configurations: m is just the number of colors, and the
orbit count is a polynomial in m.

But we do not yet know how to determine the size of a specific orbit along the
lines of the Tic-Tac-Toe problem: currently, there is somewhat tedious special
computation for each given configuration.

To ameliorate this problem we will need to take a closer look at the cycle shape
of the permutation, the number of cycles of each possible length:(

ccnt1(ρ), ccnt2(ρ), . . . , ccntn(ρ)
)

A Polynomial Trick 46

Define a monomial in n variables for each ρ ∈ G, cycle index monomial for ρ,
by

Zρ(x1, . . . , xn) := x
ccnt1(ρ)
1 x

ccnt2(ρ)
2 . . . xccntn(ρ)

n

and the cycle index polynomial to be the sum of all these:

ZG(x) := 1
|G|
∑
ρ∈G

Zρ(x)

Corollary
The number of distinct orbits is N = ZG(m, m, . . . , m).

Quoi? 47

Why should it be any better to write the polynomial

x
ccnt1(ρ)
1 x

ccnt2(ρ)
2 . . . xccntn(ρ)

n

rather than the more pedestrian cycle shape vector

(ccnt1(ρ), ccnt2(ρ), . . . , ccntn(ρ))

never mind the flaky notation

1ccnt1(ρ) + 2ccnt2(ρ) + . . . + nccntn(ρ)

we briefly used last time? The same information is conveyed in all three cases,
we can easily translate back and forth.

True, but polynomials come equipped with a number of operations: addition,
multiplication, substitution of integers, substitution of other polynomials. This
is the whole idea behind generating functions. Ours here are finite
(polynomials), but they are just as useful as their infinite cousins.

Example: D4 48

For example, for G = D4 we have

ZG(x) = 1
8(x4

1 + 2x2
1x2 + 3x2

2 + 2x4).

Hence
N = ZG(m) = 1

8(m4 + 2m3 + 3m2 + 2m).

Addition, multiplication and substitution xi 7→ m all conspire to produce the
right value.

Not bad, but we still can’t quite handle the Tic-Tac-Toe problem in style.

Weights 49

For f ∈ X let

dcnti(f) := number of vertices v such that f(v) = ci

Note that
∑

i
dcnti(f) = n.

Intuitively, the weight of a configuration is given by the color shape of the
configuration, the vector

(dcnt1(f), dcnt2(f), . . . , dcntm(f)) ∈ Nm

This provides full information about the number of vertices of each color.

Weights are an invariant in the sense that all elements in an orbit of G have
the same weight: the permutations can move the colors around, but they
cannot change the color counts. So we can talk about the weight of an orbit.

Formal Weights 50

Again, it turns out to be more convenient to define the weight of a coloring f
by the monomial

weight(f) := c
dcnt1(f)
1 c

dcnt2(f)
2 . . . cdcntm(f)

m

Note that weight(f) is a “purely formal expression”, the ci are just colors.

More precisely, weight(f) is a an element of the polynomial ring Z[c1, . . . , cm].

Generating functions are your friend.
We will see shortly that this trick makes it easy to determine the number of
orbits of a given weight.

The Critical Example 51

Suppose we have n = 8 and ρ = (1)(2)(3)(4)(56)(78).

Which configurations over three colors r, g, b are invariant under ρ?

We can think of a coloring as a word

u1u2u3u4u5u6u7u8

of length 8 over the alphabet {r, g, b}.

Since our permutation is rather lame, the only constraint for invariance is
u5 = u6 and u7 = u8, other than that, anything goes. So we have a language
I ⊆ {r, g, b}8,

A Regular Expression 52

We can describe I by a regular expression:

(r + g + b)(r + g + b)(r + g + b)(r + g + b)(r2 + g2 + b2)(r2 + g2 + b2) =
(r + g + b)4(r2 + g2 + b2)2

By expanding this regex we get an explicit list of the words in I, a language of
cardinality 729 = 36.

So there are 729 invariant configurations. Nice, but we would like to answer
questions about configurations with a specific weight (remember tic-tac-toe).

The Trick 53

Types, Schmypes: We can also think of this regex as a polynomial in Z[r, g, b].

Now the variables commute and we can expand the expression, and collect
terms with the same weight. We wind up 45 terms, each of degree 8.

b8 + 4 b7 g + 8 b6 g2 + 12 b5 g3 + 14 b4 g4 + 12 b3 g5 + 8 b2 g6 + 4 b g7 + g8 + 4 b7 r+
12 b6 g r + 20 b5 g2 r + 28 b4 g3 r + 28 b3 g4 r + 20 b2 g5 r + 12 b g6 r + 4 g7 r+

8 b6 r2 + 20 b5 g r2 + 32 b4 g2 r2 + 40 b3 g3 r2 + 32 b2 g4 r2 + 20 b g5 r2 + 8 g6 r2+
12 b5 r3 + 28 b4 g r3 + 40 b3 g2 r3 + 40 b2 g3 r3 + 28 b g4 r3 + 12 g5 r3 + 14 b4 r4+
28 b3 g r4 + 32 b2 g2 r4 + 28 b g3 r4 + 14 g4 r4 + 12 b3 r5 + 20 b2 g r5 + 20 b g2 r5+

12 g3 r5 + 8 b2 r6 + 12 b g r6 + 8 g2 r6 + 4 b r7 + 4 g r7 + r8

Weight 2,2,4 54

Consider the term 32 r2 g2 b4.

The 32 choices for an invariant configuration of weight r2 g2 b4 are

rrggbbbb, rrbbggbb, rrbbbbgg, rgrgbbbb, rggrbbbb, rbrbggbb, rbrbbbgg, rbbrggbb,

rbbrbbgg, grrgbbbb, grgrbbbb, ggrrbbbb, ggbbrrbb, ggbbbbrr, gbgbrrbb, gbgbbbrr,

gbbgrrbb, gbbgbbrr, brrbggbb, brrbbbgg, brbrggbb, brbrbbgg, bggbrrbb, bggbbbrr,

bgbgrrbb, bgbgbbrr, bbrrggbb, bbrrbbgg, bbggrrbb, bbggbbrr, bbbbrrgg, bbbbggrr

These are precisely the words over alphabet {r, g, b} with weight (2, 2, 4)
subject to the constraint u5 = u6 and u7 = u8.

And the CIP? 55

In our expample, we have Zρ(x) = x4
1x2

2.

Our magic polynomial is just Zρ(r + g + b, r2 + g2 + b2).

Logic and Algebra 56

This all hinges on the fact that we can express logic by algebra: we really need
to consider choices of colors on the cycles of a given permutation.

But we can translate this counting problem into polynomial arithmetic by
introducing formal variables for the colors and then working in the polynomial
ring Z[r, g, b]. It is quite surprising how much mileage one can get out of
generating functions.

Since we can perform the arithmetic operations easily, this translation allows for
easy computation – sort of, a computer algebra system might come in handy.

Here is a more general description of this method.

Pattern Inventory 57

Let

N(a1, a2, . . . , am) := # orbits with weight ca1
1 ca2

2 . . . cam
m .

and define the pattern inventory of G on X to be∑
a

N(a1, a2, . . . , am) ca1
1 ca2

2 . . . cam
m

This is a (typically huge) polynomial in variables c1, . . . , cm whose coefficients
contain exactly the counting information we are after.

Nice, but utterly useless unless we can somehow compute the pattern inventory
(without resorting to brute force, of course).

Finale Furioso 58

Theorem (Pólya-Redfield)
Set yi = ci

1 + ci
2 + . . . + ci

m. Then the pattern inventory is ZG(y1, y2, . . . , yn).

Likewise, Zρ(y1, y2, . . . , yn) is the generating function for the number of
patterns of the indicated weight, invariant under ρ.

It may still seem rather difficult to compute the pattern inventory, but with a
little computer algebra it is not too hard: we need to deal with permutation
groups and some polynomial algebra.

CIP for D4 59

First we compute all the 8 monomials, based on cycle shapes. Here are some
examples.

ρ Zρ ρ Zρ

1 x4
1 β x2

2

α x4 αβ x2
1x2

α2 x2
2 α2β x2

2

α3 x4 α3β x2
1x2

Then we take the average of all the monomials and we get the CIP for D4:

1
8
(
x4

1 + 2x2
1x2 + 3x2

2 + 2x4
)

Two Colors 60

Assume m = 2.

Zα(y) = c4
1 + c4

2

Zα2 (y) = c4
1 + 2 c2

1 c2
2 + c4

2

Zα3β(y) = c4
1 + 2 c3

1 c2 + 2 c2
1 c2

2 + 2 c1 c3
2 + c4

2

Lastly, here is the pattern inventory:

ZG(y) = c4
1 + c3

1 c2 + 2 c2
1 c2

2 + c1 c3
2 + c4

2

There are 6 orbits, two of weight c2
1 c2

2.

Tic-Tac-Toe 61

For the Tic-Tac-Toe problem we have |V | = 9 and |C| = 3.

As we have seen, the group G acting on the board is isomorphic to D4 but has
degree 9.

Thus, the cycle decompositions for the permutations in G are quite different
from the previous examples and the CIP is:

1
8(x9

1 + 2x1x2
4 + x1x4

2 + 4x3
1x3

2)

More Examples 62

three colors already make a mess even for n = 4.

c4
1 + c3

1c2 + 2c2
1c2

2 + c1c3
2 + c4

2 + c3
1c3 + 2c2

1c2c3 + 2c1c2
2c3 +

c3
2c3 + 2c2

1c2
3 + 2c1c2c2

3 + 2c2
2c2

3 + c1c3
3 + c2c3

3 + c4
3

For n = 10 and m = 2 we get

1
20
(
x10

1 + 5x2
1x4

2 + 6x5
2 + 4x2

5 + 4x10
)

c10
1 + c9

1c2 + 5c8
1c2

2 + 8c7
1c3

2 + 16c6
1c4

2 + 16c5
1c5

2+
16c4

1c6
2 + 8c3

1c7
2 + 5c2

1c8
2 + c1c9

2 + c10
2

Computer Algebra 63

1 Some Applications

2 Pólya-Redfield

3 Lamplighters

Groups for Actions 65

Most of the groups we have used in Pólya counting so far are fairly
straightforward: they correspond directly to geometric symmetries. Of course,
things get messier in higher dimensions, but still.

This might create the impression that the groups associated with actions on
combinatorial objects are always easy to understand. Not so. Sometimes it
requires quite a bit of effort to come up with the right group that describes
some (intuitively clear) action.

Here is a notorious example.

Problem 1: The Lamplighter 66

Suppose you have a ring of n lamps; each lamp is either on or off.

Figure 1. A fancy model of the 6-lamp machine M6 (illustration by Ruben de Vela).

6-lamp machine M6 in its initial state: all the lamps off (empty circles) and the lighter
pointed at the topmost lamp. Figure 2(b) shows a less pristine state of M6. Every state
of the machine can be encoded by an n-bit string to indicate the state of the lamps
(clockwise starting from the lighter, with 1’s for lit lamps), together with an integer in
{0, . . . , n − 1} indicating the position of the lighter. There are n · 2n possible states for
a machine with n lamps.

(a) Initial state: (000000, 0). (b) (100010, 3), the result of
applying αρ2αρ to (a).

Figure 2. Two states of the 6-lamp machine.

The group Ln consists of actions on Mn . It is generated by ρ, the action of moving
the lighter to the next lamp clockwise, and α, the action of toggling whichever lamp
the lighter is pointing to: turning it on if it’s off, or vice versa. Both operations are
invertible, as α is its own inverse, and ρ−1 = ρn−1 in Ln . Order matters, since ρα
(“toggle the current lamp, then move the lighter clockwise”) has a different effect than
αρ (“move the lighter clockwise, then toggle that lamp”). I use the usual order for
composition of functions: the rightmost action occurs first. For example, Figure 2(b)
can be achieved by αρ2αρ, or just as well by ρ2αρ4αρ3.

There’s an important principle here: group elements in Ln (actions) can be identi-
fied, bijectively, with states of Mn by identifying each group element with the result of
its action on the initial state. This reveals any lamps toggled by the action (they end up
lit) and how far the lighter ultimately moves, relative to its initial position. In this way,
every ordered pair has a useful double meaning. For one thing, it tells us immediately
that Ln is a group of n · 2n elements. This double meaning is potentially confusing,
however, so let’s examine the example of Figure 2 carefully. As a state, (100010, 3)
represents the static picture of Figure 2(b). As a group element, (100010, 3) denotes
that action which changes Figure 2(a) to Figure 2(b). This action could be repeated,
followed by other actions, applied to any other state of the machine, and so on. The ac-
tion of group element β = (100010, 3) is summed up as “The pointer advances three

204 „ THE MATHEMATICAL ASSOCIATION OF AMERICA

There is an eponymous lamplighter, some dude who walks around and turns
lights on and off.

More Precisely . . . 67

The lamplighter can perform two atomic actions:

α move to the next lamp, or

τ toggle the state of the current lamp.

The actions are clearly reversible, so there must be a group plus action hiding
somewhere.

It is obvious that αn = 1 and τ2 = 1.

The group does not commute, ατ ̸= τα (assuming n > 1).

But what exactly is the group, and how does it act?

The Space 68

Clearly we can describe the space of configurations as

X = 2n × Zn

So we are dealing with bitvectors and modular numbers.

The picture shows the configurations (000000, 0) and (101100, 2).

The Group 69

We need the group G generated by α and τ , something like

⟨α, τ | αn = 1, τ2 = 1, . . .⟩

but we don’t have all the necessary identities for this kind of description. For
example, it is true that

(ταταn−1)2 = 1

It seem like a good idea to try to write the group elements in two parts:

part 1 describes the changes in lights (toggle pattern), and

part 2 describes the movement of the lamplighter.

So G should be a product, something like G = A × B.

Full Disclosure 70

Traditionally, one considers a bi-infinite row of lamps rather than a finite circle.
So the configurations are

X =
∏
Z

2 × Z

If only finitely many lamps are ever lit (which is automatically the case if we
start with all lights off), we get

X =
∐
Z

2 × Z

So the space of configurations is fairly straightforward in all three cases, but we
need to figure out what exactly the group is. We’ll ignore these infinite groups.

An Attempt 71

Recall our general strategy: we want to combine the atomic operations and
their inverses in arbitrary ways. For example, there has to be a group element
for “toggle 0 and 1” (coordinates are relative to the lamplighter’s position).
and so forth. And the group operation applied to “toggle 0 and 1” and “toggle
1 and 2” should be “toggle 0 and 2”.

So one would expect something like

G = 2n × Zn

The first component keeps track of toggles, the second of the lamplighter’s
position.

(a, s) should act on (x, p) as follows: flip the lights in x according to a, then
change p according to s.

Details 72

Let ei ∈ 2n be the unit vector with the 1 in position i ∈ (n), so e.g.
e3 = 00010000. Then we would like to have the following interpretation:

τ ; (e0, 0): toggle the lamp at the current position.

α ; (0, 1): the lamplighter moves forward by one.

And (e0 ⊕ e1, 3) means: toggle the lights in relative positions 0 and 1, then
move forward by 3 places, corresponding to τατα2.

Does G = 2n × Zn properly reflect this intuition? Recall that in a product
group, the two group operations are applied separately in each of the two
components.

(a, r)(b, s) = (a ⊕ b, r + s)

The Mismatch 73

Consider the group element τατα. According to the definition of our group, we
have

(e0, 1)(e0, 1) = (e0 ⊕ e0, 2) = (0, 2)

where ⊕ stands for bit-wise xor. Our model thinks that τατα = α2, which is
clearly false. The position is right, but not the toggle pattern: simply adding
the vectors does not reflect the change in position.

What we need instead as the result of the multiplication is

(e0, 1)(e0, 1) = (e0 ⊕ e1, 2)

Location, Location, Location 74

We need to take into account the position of the lamplighter: when the
lamplighter moves, the next switch-vector has to be adjusted accordingly.

More technically, a modular number s acts on a by rotating the sequence by s
places.

We write σ for the cyclic shift. To fix our group, we keep the same carrier set,
but we adjust the group operation to

(a, r)(b, s) = (a ⊕ σr(b), r + s)

Semidirect/Wreath Products 75

One might suspect that group theorists are well aware of this type of modified
product: they are called semidirect product or wreath product. We are not
going to explain these notions here, take a look at a standard group theory
text.

Recall that 2n is the Boolean group of order 2n, in the special case n = 1 we
get the additive group Z2, which also happens to be the symmetric group on
two letters. At any rate, the lamplighter group on a ring of size n is given by
the wreath product

G = 2 ≀ Zn = 2n ⋊ Zn

Four Lamps 76

Exercises 77

Exercise
Verify (ατ iατ−i)2 = 1.

Exercise
Interpret (ατ iατ−i)2 = 1 geometrically.

Exercise
What would happen if we were to use the “move first, then toggle”
interpretation?

Digression: Algebraists Do Care 78

The real, infinite Lamplighter group has lots of interesting properties and has
been studied extensively; Google Scholar shows 15, 900 hits.

One fun fact: the lamplighter group is closely related to finite state machines.

A “Trivial” Transducer 79

Consider the following 2-state alphabetic transducer:

0 1

1/1

0/1

0/0 1/0

Note that state 0 copies the next bit while state 1 flips it. That’s in, just copy
or flip.

Not So Fast 80

It is easy to see that picking one of the states k as initial state defines a
permutation k of all binary words. Moreover, the permutation is length and
prefix preserving; it can be pictured as an automorphism of the infinite binary
tree.

The automaton is just an elegant description of a recursive system of equations:

0(ax) = a a(x)

1(ax) = a a(x)

But then we can consider the group G generated by the permutations 0 and 1,
a subgroup of the group of all automorphism of the binary tree.

Big Surprise: G is isomorphic to the lamplighter group.

Back to Boolean Functions 81

Let us revisit the problem of counting Boolean functions modulo equivalence.
We know how to handle two cases:

Permutation of variables: Sn acting on 2n

Negation of variables: 2n acting on 2n

It is tempting to ask how to deal with permutation and negation together.

For example
x ∧ (y ∨ z) and z ∧ (x ∨ y)

are in a sense the same Boolean function: naming of variables does not really
matter and exchanging x and x does not matter (much) either.

PN-Equivalence 82

We refer to two Boolean functions that can be obtained from each other by
permuting and/or negating variables as PN-equivalent.

Counting the number of PN-equivalence classes should be a problem that falls
well within the reach of the counting methods we have just seen.

It is even clear that V = 2n and C = 2 is the right framework.

Question: What is the group G acting on V in this case?

No doubt both Sn and 2n are involved, but exactly how?

Identifying the Group 83

Note that we can figure out the cardinality of G: 2n · n!

An entirely reasonable first guess would be that

G = 2n × Sn

is the right group; after all, the pieces make sense and we get the right size.

Alas, that’s plain wrong. To see why, consider g = (e1, (12)) ∈ G. Informally, g
means “negate the first variable, then swap it with the second.” The effect of
g2 ought to be something like

x y z . . . 7→ y x z 7→ x y z . . .

Disaster strikes: in G we have g2 = 1.

Another Generalization 84

Both in the full and restricted wreath product we considered so far, the group
B acts on sequences,

∏
B

A or
∐

B
A.

But we also could have B acting on some set X and then consider sequences
in
∏

X
A or

∐
X

A.
The definitions don’t change at all: we can still “multiply” a sequence index
with a group element in B.
That’s all we need!

One writes A ≀X B for this version of the wreath product.

Wreath Products to the Rescue 85

The problem is again that the ordinary Cartesian product simply fails here, we
need something slightly more complicated: the (generalized) wreath product
G = S2 ≀[n] Sn. Writing the operations additively and multiplicatively, we have
in G:

(x, f)(y, g) = (x + f ∗ y, fg)

where
f ∗ y = (yf(1), . . . , yf(n)).

is the vanilla left action.

Signed Permutation Matrices 86

If you find this description of G a bit obscure, think of permutation matrices
instead: a permutation matrix of order n is 0/1-matrix of size n by n such that
every column and every row contains exactly a single 1.

It is not hard to see that these matrices correspond precisely to permutations of
[n]. Under ordinary matrix multiplication, they produce a group that is
isomorphic to Sn.

To represent G = S2 ≀[n] Sn we need to use signed permutation matrices: the
entries now can be +1 or −1.
Again, with ordinary matrix multiplication, we obtain a group isomorphic to G.
Note that the cardinalities match up.

Exercise
Verify the last claim.

Few Variables 87

Still, for very small n we can compute G directly and determine its cycle index
polynomial. For example, for n = 5 we get

1
3840

(
x32

1 + 20x16
1 x8

2 + 60x8
1x12

2 + 231x16
2 + 80x8

1x8
3 + 240x4

1x2
2x6

4 + 240x4
2x6

4+

520x8
4 + 384x2

1x6
5 + 160x4

1x2
2x4

3x2
6 + 720x4

2x4
6 + 480x4

8 + 384x2x3
10 + 320x2

4x2
12
)

The number of PN-equivalent Boolean functions of 5 variables is therefore

1, 228, 158

as opposed to 4, 294, 967, 296 functions in the set-theoretic sense.

Full Disclosure 88

A brute force computation of CIPs as on the last slide is not really the right
answer: we should try to compute the CIP for G given the CIPs for the
Boolean group 2n and the full symmetric group Sn.

The good news is: this can be done and produces a computationally
satisfactory answer.

The bad new is: the calculation is quite complicated and would lead us too far
astray.

	Some Applications
	Pólya-Redfield
	Lamplighters

