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Counting Patterns 2

Here is our next Big Problem:

We have a finite set A and an equivalence relation ≈ on A.
We want to count the number of equivalence classes of ≈ (also
known as the index of the equivalence relation).

Think of an equivalence class as a pattern, so we want to count patterns.

Of course, A will be large. In fact, often we have a whole parametrized family
An and we want an answer in terms of a function of n.



Classical Killer App: Chemistry 3

Suppose we want to enumerate hydrocarbon molecules where some hydrogen
atoms have been replaced by hydroxyl groups. We could use alkenes
(C2H5OH), but let’s work with carbocycles like benzene instead.
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Some counting:
(6

2

)
= 15,

(5
1

)
= 5 or, taking into account symmetry, 3.

Only the last answer makes chemical sense.



Pólya-Redfield Counting 4

G. Pólya
Kombinatorische Anzahlbestimmungen für Gruppen, Graphen
und chemische Verbindungen
Acta Mathematica 68 (1937) 1: 145–254.

Actually, Pólya was scooped:

J. H. Redfield
The Theory of Group-Reduced Distributions
American J. Mathematics 49 (1927) 3, 433–455



Problem 1: Tic-Tac-Toe 5

How many different ways are there to place 3 crosses and 3 naughts on a
(standard 3 × 3) Tic-Tac-Toe board?

No problem: there are
( 9

3,3,3

)
= 1680 possible placements.

OK, but what if we identify boards that can be obtained from rotation, or
looking through a mirror?



Eyeballing It 6

Clearly this involves the dihedral group D4, and a single placement of marks
can have as many as 8 variants.
So we should roughly expect 1680/8 = 210 patterns.

But that is not quite right, either: some placements have fewer than 8 variants,
so we are under-counting the number of patterns.



Problem 2: Boolean Circuits 7

Here is a similar but somewhat less frivolous problem. Suppose we want to
implement Boolean functions f : 2n → 2 as circuits.

There are 22n

such functions, but we don’t need as many circuits. For example,
we may have f(x, y, z) = g(y, z, x) so it suffices to implement either f or g.

In general, we can permute the variables arbitrarily: two functions f and g are
equivalent if

f(x) = g(π(x))

for some permutation π.

How many Boolean functions are there modulo input permutations?



Another Version 8

Permuting the inputs is an obvious modification of a circuit, but there are other
possibilities.

For example, it is straightforward to negate input bits and/or the output bit.
Thus, there is another equivalence

f(x) = g(x ⊕ c) ⊕ d

where c ∈ 2n, d ∈ 2 and ⊕ denotes exclusive or.

In other words, be allow flipping some input bits, as well as the output bit.



And More . . . 9

We can combine different kinds of modifications.

Given a permutation π on [n], we can define the modification f of g:

f(x) = g(π(x) ⊕ c) ⊕ d

= g(xπ(1) ⊕ c1, xπ(2) ⊕ c2, . . . , xπ(n) ⊕ cn) ⊕ d

So how many functions 2n → 2 are there modulo this identification?

This gets fairly messy fairly soon. On the face of it, it’s not clear how to go
about this kind of counting problem.
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Burnside, Pólya and Redfield 11

To tackle this type of problem in style one can use some ideas from classical
algebra:

groups
subgroups
homomorphisms
actions

These algebraic ideas are all 19th century, but the applications are 20th century.
And, as we will see, to get real answers requires quite a bit of computation.



Central Idea 12

Groups describe symmetries, so if we want to count modulo symmetry it is
natural to use groups to do so.



Before we start . . . 13

Observe that I write functions on the right and functional com-
position from left to right. This is undoubtedly the Wave of
the Future. It makes functional diagrams easier to read and
corresponds to the natural order of doing things on a pocket
calculator.

This is from a 1976 paper “Some Applications of the Wreath Product
Construction” by the category theorist Charles Wells. Obviously, Wells was the
proud owner of an HP calculator.

Alas, he missed the boat on this one. By about a lightyear.

We will realize half of Wells’ dream: composition is diagrammatic, but we
chicken out and write function application on the left. Yes, I know . . .



Counting Problems 14

Let’s go back to the Tic-Tac-Toe problem from above: we want to count
patterns, where two boards are equivalent if one can be moved to the other by
rotations and/or reflections.

Clearly, we have to consider the interaction between Tic-Tac-Toe boards and
the elements of the dihedral group D4.
As we have seen, we can safely assume that the group in question is always a
subgroup of a symmetric group, so we are dealing with a class of permutations
(but see below for some twists).

What is needed is some glue that connects the permutations with the objects
we are interested in (such as the boards, or carbocycles, or circuits, . . . )



Déjà Vu, All Over Again 15

We are dealing with

a collection X of objects (configurations),

a collection S of operations on the carrier set X.

A priori, X is just a flat set with no particular structure. We can think of S as
a collection of atomic actions that can be performed on on X.

It is entirely natural to consider composite operations that are obtained by
applying a whole sequence of operations from S. This can be modeled
naturally by the free monoid S⋆, so we are dealing with monoid actions.



nil novis sub solem 16

Free monoids Σ⋆ are the mathematical model for temporal sequences: we
interpret aba as: first do a, then b, then a again.

Actually, this should sound eminently familiar: a DFA is a perfect example of
an action of the free monoid Σ⋆ on a finite set Q:

Given “instruction” a ∈ Σ, apply δa to the current state p ∈ Q.

In our current setting, we are interested in actions that are reversible, so we
have to deal with groups rather than just plain monoids. Other than that, it’s
very much the same idea.



Reversibility 17

Proviso: We will focus on a collection S of basic, reversible operations. In this
case, it is natural to consider the group generated by S rather than the
monoid.

The main idea is simply that s−1 should undo the effect of s.

As before with monoids, 1 should have no effect whatsoever and things need to
be compatible in the right way.

Following the current Bourbaki/Hilbert standard, we need to axiomatize this
basic idea.



Left Actions 18

Definition
Let G be a group and X a set. A left action of G on X is a function φ such
that

φ : G×X → X

φ(a ∗ b, x) = φ(a, φ(b, x))
φ(1, x) = x

Here a, b ∈ G and x ∈ X. X is also called a G-set.

Notation:
It is customary to write a · x or even a x instead of φ(a, x). Hence

(a ∗ b) · x = a · (b · x)
1 · x = x

This is much better notation, albeit slightly dangerous.



Types, Schmypes 19

We can push our luck a bit and write

(ab)x = a(bx)

1x = x

This gets to be particularly interesting if we deal with left actions and right
actions (see below) at the same time.

In case of doubt, write out the multiplication operators. Or go anal-retentive
and write φ if you want to play it absolutely safe.



Geometry 20

Let G = GL(2,R) be the group of invertible 2-by-2 matrices over the reals, and
X = R2 the 2-dimensional plane.

Then G acts on X via A · x = Ax.

The action induced by the rotation matrix A = 1/2
(

1 −
√

3√
3 1

)
.



Permutation Groups 21

Recall that S(X) or SX denotes the group of all permutations of X under
composition.

As usual, we use diagrammatic (l2r) composition for S(X).

Definition
A permutation group over X is a subgroup G of S(X).
The order of G is its cardinality and the degree of G is the cardinality of X.

By Cayley’s Theorem every group G is isomorphic to a permutation group: we
can think of the carrier set as being G. Note that in general the degree of G
may be much smaller than the order of G, though.



Moving Things Around 22

An element of a permutation group can naturally be used to “rearrange”
objects.

Consider a list of n objects:

x = (x1, x2, . . . , xn)

We can use any permutation f in Sn to rearrange the elements of x:

x′ = (xf(1), xf(2), . . . , xf(n))

More generally, a permutation group of degree n can operate on n-vectors.

If we have some natural group G, say, some geometric group of rations and/or
reflections, we can translate it into a permutation group.



Actions and Homomorphisms 23

We connect G to a symmetry group by a homomorphism Φ : G → S(X) .
Particularly interesting to us is the case where Φ is a monomorphism, but the
idea works in general.

Then

φ(a, x) = Φ(a−1)(x)

is a left action of G on X, and all left actions arise in this way.

You may find the a−1 a bit peculiar and probably expected a plain a instead.
The reason we need the inverse is that we want a left action and we use
diagrammatic composition.



Check the Axioms 24

φ(a ∗ b, x) = Φ((a ∗ b)−1)(x)

= Φ(b−1 ∗ a−1)(x)

= (Φ(b−1) ◦ Φ(a−1))(x)

= Φ(a−1)
(
Φ(b−1)(x)

)
= φ(a, φ(b, x))

Exercise
What if we had failed Wells and used the wrong definition of composition?



The Standard Example 25

Consider a permutation group G ⊆ Sn (of degree n and order at most n!).
One very useful space of objects here is

X = An

the set of n-vectors over A, an arbitrary set (later A will often have additional
structure, but for the time being it’s a naked set).

Claim
G acts on X on the left via

f · x = (xf(1), xf(2), . . . , xf(n))



Proof 26

It is clear that 1 · x = x.
Consider

(f ◦ g) · x = y1

versus

f · (g · x) = y2.

We need to show that y1 = y2.
Recall that we compose functions from left to right, so that
y1 = (xg(f(1)), . . . , xg(f(n))).
But then y2 = f · (xg(1), . . . , xg(n)) = y1.

2

Right?



Stop! Mental Health Alert 27

Think carefully – this looks absolutely wrong, but it’s right. Take a good look
at the following.
Write ui = xg(i) by the free-country argument.

g · x = (xg(1), xg(2), . . . , xg(n))

= (u1, u2, . . . , un)

f · u = (uf(1), uf(2), . . . , uf(n))

= (xg(f(1)), xg(f(2)), . . . , xg(f(n)))

Exercise
Make sure you really understand the proof.
What would happen if we did composition the other way around?



And Right Actions 28

Wurzelbrunft Wisdom: Where there’s a left, there must be a right . . .

Definition
Let G be a group and X a set. A right action of G on X is a function φ such
that

φ : X ×G → X

φ(x, a ∗ b) = φ(φ(x, a), b)
φ(x, 1) = x

Needless to say, this is often written x · a and x a.

To maintain a semblance of sanity, we always write a, b, c, . . . for group
elements and x, y, z, . . . for the elements of X.



Again: Actions and Homomorphisms 29

As before for left actions, we can use group homomorphisms Φ : G → S(X) to
obtain right actions.
This time we define

φ(x, a) = Φ(a)(x)

to get a right action of G on X, and vice versa.

Recall that for a left action we had to use a−1, now the definition is perhaps a
bit more natural.

Exercise
Verify that this definition really produces a right action.



Yet Another Right Action 30

Recall the operation of prefix quotients on languages: w−1L is obtained by
deleting prefix w from words in L.

w−1L = { v | wv ∈ L }

Since the prefix is deleted at the beginning (left end) of the word this is usually
written on the left, as indicated – but these quotients are another example of a
right action of the monoid Σ⋆ on the collection of all languages.

Alas, since we write the action on the left we get the awkward

(uv)−1L = v−1u−1L.



Exercises 31

Exercise
Check carefully that the last two examples really are right actions of the
monoid Σ⋆. Find better notation for the quotient operation.

Exercise
Find some natural examples for left monoid actions.

Exercise
Verify that the “standard example” x · f = (xf−1(1), xf−1(2), . . . , xf−1(n))
really produces a right action.



Left versus Right 32

Again, here is our primary example of a group action: some permutation f from
the symmetric group Sn rearranging the elements of x = (x1, x2, . . . , xn).

Let f(i) = j, so the permutation moves i to j.

type intuitively result

left xi is replaced by xj (xf(1), . . . , xf(n))

right xi moves to xj (xf−1(1), . . . , xf−1(n))

Having two versions to deal with might seem plain annoying, but there are
occasions when left actions are more convenient to work with, and there are
occasions when right actions are more convenient. Grin and bear it.



Left is Right 33

For group actions, we can interchange left and right in the following sense.

Proposition
Consider two maps φ : G×X → X and ψ : X ×G → X such that

ψ(x, a) = φ(a−1, x).

Then φ is a left action if, and only if, ψ is a right action.

Proof. Suppose φ is a left action.

ψ(x, a ∗ b) = φ((a ∗ b)−1, x)
= φ(b−1 ∗ a−1, x)
= φ(b−1, φ(a−1, x))
= ψ(ψ(x, a), b)

The other direction is entirely similar. 2



Right is Left 34

Another way to establish a connection between left and right actions is to
reverse the multiplication. Given a group G = ⟨G, ·⟩ define a new group

Gop = ⟨G, ∗⟩ a ∗ b = b · a.

It is not hard to check that Gop is in fact a group.
Now any left action φ over G translates into a right action ψ over Gop by

ψ(x, a) = φ(a, x)

Exercise
Give a detailed proof of this claim.



Mathematics versus Implementation 35

From a sufficiently abstract perspective, left and right actions are the same: it
doesn’t matter much if we replace each group element by its inverse or change
the order of multiplication. In fact, there are older texts that just speak about
“a group acting on a set”. The following is a classic, highly recommended.

N.G. de Bruijn
Pólya’s Theory of Counting
E.F. Beckenbach (ed.): Applied Combinatorial Mathematics, Wiley
(1964).

That’s fine, but when it comes to actual implementation one has to be more
careful, the code for both versions is different. More importantly, you must
never mix the two versions within the same algorithm.



☠☠☠☠☠



Faithful Actions 37

Recall the homomorphism Φ : G → S(X) that associates each group element
with the corresponding map on X.

Definition
An action is faithful if Φ(a) = Φ(b) implies a = b.

If an action fails to be faithful, consider the kernel of Φ, the normal subgroup

H = { a ∈ G | Φ(a) = I }

Then the quotient G/H acts faithfully in the natural manner.



More Properties of Actions 38

A left action is

transitive if ∀x, y ∃ a (ax = y)

free if ∃x (ax = bx) implies a = b

regular if it is transitive and free

Free means that ax = x = 1x implies a = 1; so free implies faithful.

Analogous definitions can be given for right actions.



Groups Acting on Groups 39

Example (Regular Action)
Let G be any group. Then G acts on G via a · x = ax.

Example (Conjugation Action)
Let G be any group. Then G acts on G via a · x = axa−1.

Example (Subgroup Conjugation Action)
Let G be any group and X the set of subgroups of G.
Then G acts on X via a ·H = aHa−1 = { aha−1 | h ∈ H }.



Flipping Bits 40

Define three word maps α, β, γ : 2⋆ → 2⋆ by α(ε) = β(ε) = γ(ε) = ε and

α(0x) = 1 γ(x)
α(1x) = 0β(x)
β(sx) = s α(x)
γ(sx) = s β(x)

Claim
The maps α, β and γ are bijections.

Hence we can define an action of F3, the free group of rank 3, on 2⋆.

Question: Is this action faithful?



Identities 41

Alas, this action is not faithful: the word maps commute and there is another
somewhat unexptected identity:

αβ = βα αγ = γα βγ = γβ

α2β2γ = I

The hard part is finding these identities; they are easy to prove by induction.

With a little effort, one can show that these are the “only identities,” and we
get a faithful action of Z2 on 2⋆:

(a, b)x = αaβb(x)

Exercise
Prove all these claims.



Dihedral Groups 42

Let’s come back to the dihedral group D4 which we can think of as the
symmetries of a square.

A

BC

D

Abstractly, D4 has the presentation

⟨α, β | α4 = β2 = 1, βα = α3β⟩



D4 43

The Cayley table and Cayley graph for D4.



Matrix Form 44

We can also represent the rigid motions of the plane in D4 as 2 × 2 matrices:(
1 0
0 1

) (
0 −1
1 0

) (
0 1

−1 0

) (
−1 0
0 −1

)
(

0 1
1 0

) (
−1 0
0 1

) (
1 0
0 −1

) (
0 −1

−1 0

)

This has the advantage that we can directly compute the image of a corner
point (±1,±1) of the square that is moved around.



Embedding into S4 45

The natural degree of D4 is 4, and we can identify this group with a subgroup
G of S4 (the permutations that preserve adjacency):

[1, 2, 3, 4] [2, 3, 4, 1] [4, 1, 2, 3] [3, 4, 1, 2]

[3, 2, 1, 4] [1, 4, 3, 2] [4, 3, 2, 1] [2, 1, 4, 3]

It is this subgroup G that induces a regular action on the square.

For simplicity, one might express this by casually omitting G and saying
something like “D4 acts on the square.”



Cycle Decomposition 46

Recall that any permutation can be decomposed into disjoint cycles:

ρ = (v1,1, v1,2, . . . , v1,q1 ), (v2,1, . . . , v2,q2 ), . . . , (vp,1, . . . , vp,qp )

Note that it is customary to omit 1-cycles, so the notation can be ambiguous.

The cycle shape of a permutation is a (sorted) list of the cycle lengths. In the
notation above, the cycle shape would be (the sorted version of) q1, . . . , qp.

Sometimes the cycle shape is expressed more compactly by using shamelessly
exploiting polynomial notation. Type theorists should now swallow an aspirin.



D4 Cycle Shapes 47

ρ cycles shape short shape

1 (1), (2), (3), (4) (1, 1, 1, 1) 14

α (1, 2, 3, 4) (4) 41

α2 (1, 3), (2, 4) (2, 2) 22

α3 (1, 4, 3, 2) (4) 41

β (1, 4), (2, 3) (2, 2) 22

αβ (2), (4), (1, 3) (1, 1, 2) 12 + 21

α2β (1, 2), (3, 4) (2, 2) 22

α3β (1), (3), (2, 4) (1, 1, 2) 12 + 21

Here α and β are the standard generators of D4 (a rotation and a reflection).



S5 Cycle Shapes 48

15 1
13 + 21 10
12 + 31 20
11 + 22 15
11 + 41 30
21 + 31 20
51 24

In this case, it is easy to check correctness.
13 + 21 corresponds to

(5
2

)
= 10 choices of the points on the 2-cycle.

Similarly, there are 10 choices for the 2 fixed points in 12 + 31; for each, the
remaining 3 points can be arranged into a 3-cycle in 2 ways.



S6 Cycle Shapes 49

16 1
14 + 21 15
13 + 31 40
12 + 22 45
12 + 41 90
11 + 21 + 31 120
11 + 51 144
23 15
21 + 41 90
32 40
61 120

Make sure to check some of these numbers and explain where they come from.



A6 Cycle Shapes 50

17 1
14 + 31 70
13 + 22 105
12 + 51 504
11 + 21 + 41 630
11 + 32 280
22 + 31 210
71 720

This is quite similar to the last slide, but one also needs to handle the
decomposition into transpositions.



Degree 51

While it is natural for D4 to act on the vertices of a square, there are other
options:

Act on the sides of the square. This is also degree 4, and faithful.

Act on the diagonals of the square. This is degree 2, and fails to be faith-
ful. After factoring, the “real” group is Z2.



Patterns and Orbits 52

We can now formally describe patterns by having the whole group act on an
element in X.

Definition
Let φ : G×X → X be a left action. The orbit of x ∈ X under G is

Gx := { a x | a ∈ G }.

One says that the elements in an orbit are G-equivalent.

So a pattern is simply an orbit under G.

Note that our venerable old notion of orbit obtained by iterating an
endofunction f : A → A is entirely analogous: it’s just the special case where
we have the additive monoid N acting on A, rather than a group.



Chopping Things Up 53

Proposition
Let G be a group. Then the orbits Gx form a partition of X.

Proof. z ∈ Gx ∩Gy implies a x = z = b y for some a, b ∈ G. But G is a
group, so x = (a−1b) y ∈ Gy. 2

So, our terminology makes sense: the blocks of this partition are exactly the
patterns we are interested in.

Note, though, that we really need G to be a group, the argument fails for
monoids. Over a monoid, all we have is a basin of attraction.

If the action is transitive, then there is only one orbit.
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Stabilizers and Invariants 55

Now comes the important idea: using subgroups and fixed points to count. Let
φ : G×X → X be a left group action.

Definition
The stabilizer of G at x ∈ X is

Gx := { a ∈ G | a x = x }

The invariant subset of X at a ∈ G is

Xa := {x ∈ X | a x = x }

So both definitions involve fixed points of the action, once from the perspective
of the group, and once from the perspective of the G-set.



How to Count 56

We want to determine the size of an orbit Gx. The only obvious bounds are

1 ≤ |Gx| ≤ |G|

The problem is that we may well have ax = bx for a ̸= b. But then

a x = b x ⇐⇒ a−1b x = x ⇐⇒ a−1b ∈ Gx ⇐⇒ b ∈ aGx

So the size of the orbit |G|/|Gx|.

Note that the algebraic manipulations are all justified by the definition of
action.



Stabilizers 57

Proposition
The stabilizers Gx are subgroups of G.

Proof.
Let a, b ∈ Gx. Then

(a−1b)x = a−1 (b x) = a−1 (x) = a−1 (a x) = x

Hence a−1b ∈ Gx and we are done. 2



Orbit Sizes 58

Proposition
The index [G : Gx] is the size of the orbit of x.

Proof. As already pointed out

a x = b x ⇐⇒ b ∈ aGx

Hence |Gx| many elements in G produce the same element in the orbit.
So |Gx| = [G : Gx]. 2

Recall that by Lagrange’s theorem, [G : H] = |G|/|H| is integral for finite
groups.



Enumeration 59

So we can write the partition of G into blocks as

G/Gx = {g1Gx, g2Gx, . . . , grGx}

where r = [G : Gx] then the orbit has the form

Gx = {g1 x, g2 x, . . . , gr x}

Hence, if we know representatives for the cosets, then we can enumerate the
orbit of x directly without repetitions.

The bad news: We can always choose g1 = 1, but other than that it may not
be so easy to get at the gi (the problem of finding a complete set of
representatives). This is a standard problem in computational group theory.



Digression: Double Counting 60

Double counting is a very simple but sometimes surprisingly powerful idea.

Suppose R (for rows) and C (for columns) are two finite sets and M is an R
by C matrix with 0/1 entries.

Let row(r) be the number of 1’s in row r ∈ R, and let col(c) be the number of
1’s in columns c ∈ C.

Then ∑
r∈R

row(r) =
∑
c∈C

col(c).

Yes, yes, that’s trivial. But . . .



Application 61

Lemma ∑
a∈G

|Xa| =
∑
x∈X

|Gx|.

Proof.
Consider the action matrix: a G by X matrix M defined by

M(a, x) =
{

1 if a x = x,
0 otherwise.

The rows are bitvectors for the invariant sets, and the columns are bitvectors
for the stabilizers.

2



Sub-Digression: Number of Divisors 62

For a positive integer n let d(n) be the number of divisors of n.
d(n) is fairly complicated.

20 40 60 80 100

2

4

6

8

10

12



Average Number of Divisors 63

How about the average
d̂(n) := 1/n

∑
x≤n

d(x).

Just as hopeless? Even more hopeless?

Let M be the n by n binary matrix with 1 in position (x, y) iff x divides y.



The number of 1’s in column y is just d(y), and difficult.

But the number of 1’s in row x is simply ⌊n/x⌋.

So the total number of 1’s is∑
x≤n

row(x) =
∑
x≤n

⌊n/x⌋ ≤
∑
x≤n

n/x = n ·Hn.

and the error is at most n.

Hence d̂(n) is about logn.



Burnside’s Lemma 65

Theorem
Let N be the number of distinct orbits of G acting on X. Then

N = 1
|G|

∑
a∈G

|Xa|.

Proof.

1
|G|

∑
a∈G

|Xa| = 1
|G|

∑
x∈X

|Gx| =
∑
x∈X

1
[G : Gx] =

∑
x∈X

1
|Gx| = N.

2

So the number of orbits is the average of the number of fixed points.



Full Disclosure 66

Burnside published this lemma in 1900.

Unfortunately, Frobenius already published the same result in 1887: Über die
Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul.

And Frobenius was scooped by Cauchy in 1835: Mémoire sur diverses
propriétés remarquables des substitutions régulières ou irrégulières, et des
systémes de substitutiones conjugées.

Note how papers used to have long, descriptive names.
And, a searchable web really is a blessing (of course, this assumes proper
semantic markup, currently a pipedream).



Computing Burnside 67

In practice, this means that one has to

Determine the group of actions G.

Compute the (sizes of the) invariant sets Xa for all group elements a.

Usually G is clear from the given atomic actions, but sometimes even this step
requires a bit of work.

Counting fixed points can be problematic when the group is large, or when the
action is very complicated. In the 21st century, one can use computer algebra
to take care of the more painful computations.
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