
Intermediate Problems

Klaus Sutner
Carnegie Mellon University

1 Intermediate Problems

2 Graph Isomorphism

Complexity Classes 2

A complexity class C is a collection of decision problems that are all
defined by a common resource bound.

Useful classes have closure properties:

Intersection Logical “and”, sequential composition.

Union Logical “or”, parallel composition.

By contrast, closure under complement often fails, or is not known.

We will ignore other complexity classes based on function problems,
counting problems, optimization problems, etc.

Four Examples 3

Semidecidable, Σ1

Decidable, ∆1.
Nondeterministic polynomial time, NP.
Deterministic polynomial time, P.

Clearly

P ⊆ NP ⊆ ∆1 ⊆ Σ1

All inclusions except the first are known to be proper.

Formally we can always think of C ⊆ P(2⋆): code the Yes-instances of a
problem as a formal language.

A Zoo 4

Reductions 5

A complexity class C typically comes equipped with a reduction relation,
a pre-order (reflexive and transitive) ≤ that corresponds to “easier than:”
for A, B ∈ C we have B ≤ A if a decision algorithm for A gives rise to a
decision algorithm for B (using only limited resources).

Example: For semidecidable sets A ≤ B means that membership in A
can be determined with B as oracle (no bounds on the computation).

Example: For NP sets A ≤ B means that there is a polynomial time
computable function f : 2⋆ → 2⋆ such that

x ∈ A ⇐⇒ f(x) ∈ B

These are the standard reductions, but there are several other
possibilities.

Hardness and Completeness 6

Suppose C is a complexity class C with reduction ≤.

A is C-hard if for all B ∈ C: B ≤ A.

A is C-complete if A is C-hard and A ∈ C.

Thus, the C-complete problems are the most difficult problems in C (wrt
the reduction ≤).

The Halting set H is the standard example of a complete semidecidable
set.

Likewise, Satisfiability is complete for NP.

Degrees 7

The reduction relation ≤ on C is a pre-order (but typically not total).
Hence it induces an equivalence relation

A ≡ B ⇐⇒ A ≤ B and B ≤ A

The equivalence classes are called degrees: all problems in a degree are of
similar difficulty.

We write deg A for the degree of A ⊆ Σ⋆.

Turing Degrees 8

In general computability, the most important example of a reduction is
Turing reducibility: A ≤T B if there is a Turing machine with oracle B
that decides A.

The corresponding degrees are called Turing degrees or degrees of
unsolvability, written degT A.

There are two complexity classes for which Turing reducibility is natural:

all subsets of N, written D

all semidecidable subsets of N, written E .

These have been studied to death, an beyond; see below.

Upper Bounds 9

Given A, B ⊆ N, define

A ⊕ B = (2A) ∪ (2B + 1)

Claim: The degree of A ⊕ B is the least degree above degT A and
degT B.

If this sounds lame, try to do something similar for below, some kind of
meet rather than join.

The Monster D 10

Since D is based on the full powerset of N it is uncountable.

But note that all Turing degrees are countable, so there must be
uncountably many degrees. Also, each degree has only countably many
predecessors.

The following are quite difficult to prove and rather counter-intuitive.

Theorem
There is an uncountable set of degrees that are pairwise incomparable.

Theorem
Every countable partial order can be embedded into D as an initial
segment.

Easy Problems 11

Often a complexity class C also has a subclass C− ⊆ C that consists of all
problems in C that are “easy” in a certain sense.

Example 1: decidable is easy within E , the class of semidecidable
problems.

Example 2: P is easy within the class of NP-problems.

Note one huge difference between the two examples: we can prove that
C− ̸= C in the first case, but not in the second. And it may even be the
case that P = NP.

Post’s Question 12

∅′

∅

semidecidable

A
Is this picture of E accurate?

Is there a semidecidable set
A such that ∅ < A < H?

Why? 13

Because it is a matter of experience (not theory) that any problem that is
recognized as being semidecidable ultimately will either

turn out to be complete, or

turn out to be decidable.

In other other words, semidecidable sets that occur in the RealWorldTM

either belong to the degree of ∅ or the degree of ∅′.

It may take a long time to determine which is the case (Diophantine
equations took 70 years), but in the end everything turns out to be
decidable or complete. Basta.

Emil Post and Friedberg/Muchnik 14

So E. Post asked in 1944 whether there are any intermediate
semidecidable sets (i.e., more than just two semidecidable degrees).

Surprisingly, two people found the solution almost simultaneously:
R. M. Friedberg (an undergraduate) in the US and A. A. Muchnik in
Russia (they published their results in 1957 and 1956, respectively).

Theorem (Friedberg, Muchnik 1956/7)
There are intermediate semidecidable problems.

What is even more surprising, they used essentially the same method (a
so-called finite injury priority method). We’ll sketch the argument below,
but a complete proof is too much work.

How to Construct a Semidecidable Sets 15

To describe the construction it is best to use the characterization of
semidecidable sets as being recursively enumerable.
The construction proceeds in stages σ ∈ N.
At stage σ one builds a finite set Aσ ⊆ N. In the end we set

A :=
⋃

σ≥0
Aσ

More precisely, there is a primitive recursive function C, the construction,
such that

Aσ = C(σ, A<σ)

where A<σ =
⋃

τ<σ Aτ .
Note that once an element has been added to A, it cannot be taken out
at a later stage.

A Trick 16

It suffices to construct two incomparable semidecidable sets, i.e., two sets
A and B such that

A ̸≤ B and B ̸≤ A

Right?

The two sets are constructed in parallel in stages. To make sure they
have the right properties we use requirements:

(Re) A ̸= {e}B insure A ̸≤ B

(R′
e) B ̸= {e}A insure B ̸≤ A

Organizing Work 17

Note that there are infinitely many requirements, two for each index
e ∈ N. So we have to be careful about organizing our construction.

At stage σ we only consider objects < σ (think about hereditarily
finite sets, truncated at σ).

In particular we only consider requirements (Re) and (R′
e) for e <

σ.

And we run computations only for at most σ steps.

As a result, the construction at stage σ is really just primitive recursive.

And the sets A and B are indeed semidecidable.

But How? 18

Suppose we find at stage σ that requirement (Re) is currently broken:

A<σ = {e}B<σ

Bear in mind our restriction to a world below σ, this involves only finitely
many numbers.

Suppose also that we have some witness x for (Re):

x /∈ A<σ and {e}B<σ (x) = 0

Then we throw x into Aσ: requirement (Re) requires attention and
receives attention. For the time being, the requirement is met and goes
to sleep.

Chaos 19

OK, so we have just satisfied requirement (Re).

But there are other requirements, in particular (R′
i):

B ̸= {i}A

Since we just changed A, it may happen that some computations using
oracle A now change, and so now we have B = {i}A up to σ.

Requirement (Re) has just injured requirement (R′
i).

And, of course, if we fix (R′
i) we may clobber some other requirement,

and so on. We may satisfy a few requirements, but there apparently is no
way to deal with all infinitely many of them.

Priority 20

Here is the central idea: we prioritize requirements as in

R0 > R′
0 > R1 > R′

1 > R2 > R′
2 > . . .

We will work on (Re) at even stages, on (R′
e) at odd stages.

More importantly, a requirement can only receive attention (throw some
witness x into A or B) if that does not injure a higher priority
requirement.

This has the effect that the high priority requirements get taken care of
first, then the lower priority ones. In the limit, all requirements are
satisfied (proof is by induction).

Density 21

Friedberg/Muchnik shows that E has incomparable and thus intermediate
elements. Here is another strange result, due to Sacks.

Theorem (Density)
Suppose A and B are semidecidable and A <T B. There there is another
semidecidable set C such that A <T C <T B.

Repeating this construction we can generate a dense order of
semidecidable sets. This is not particularly intuitive, to say the least.

Natural Intermediate Problems? 22

Alas, the Friedberg/Muchnik construction is really quite frustrating: it
builds a semidecidable set that is undecidable and strictly easier than
Halting–but it has no purpose other than this; it is totally artificial.

So it is tempting to ask whether there are natural intermediate problems.

For example, maybe there is some reasonable class of integer polynomials
for which the question of the existence of integral roots is intermediate.

Not a single example of such a natural intermediate problem is known
today. All natural semidecidable problems have ultimately turned out to
be either decidable, or complete (sometimes requiring huge effort). A lot
of people find that rather frustrating.

Dana Scott 23

70 years of research on Turing degrees has shown the struc-
ture to be extremely complicated. In other words, the hierarchy
of oracles is worse than any political system. No one oracle is all
powerful.

Suppose some quantum genius gave you an oracle as a black
box. No finite amount of observation would tell you what it
does and why it is non-recursive. Hence, there would be no way
to write an algorithm to solve an understandable problem you
couldn’t solve before! Interpretation of oracular statements is a
very fine art–as they found out at Delphi.

John Myhill 24

The heavy symbolism used in the theory of recursive functions
has perhaps succeeded in alienating some mathematicians from
this field, and also in making mathematicians who are in this field
too embroiled in the details of their notation to form as clear an
overall picture of their as is desirable. In particular the study
of degrees of recursive unsolvability by Kleene, Post, and their
successors has suffered greatly from this defect, . . .

Hao Wang 25

The study of degrees seems to be appealing only to some
special kind of temperament since the results seem to go into
many different directions. Methods of proof are emphasized to
the extent that the main interest in this area is said to be not so
much the conclusions proved as the elaborate methods of proof.

Martin Davis 26

. . . but one can be quite precise in stating that no one has
produced an intermediate r.e. degree about which it can be said
that it is the degree of a decision problem that had been previ-
ously studied and named.

H. Poincaré 27

Formerly, when one invented a new function, it was to further
some practical purpose; today one invents them in order to make
incorrect the reasoning of our fathers, and nothing more will ever
be accomplished by these inventions.

David Deutsch 28

The theory of computation has traditionally been studied al-
most entirely in the abstract, as a topic in pure mathematics.
This is to miss the point of it. Computers are physical objects,
and computations are physical processes. What computers can
or cannot compute is determined by the laws of physics alone,
and not by pure mathematics.

Rolf Landauer 29

Information is not a disembodied abstract entity; it is always tied
to a physical representation. It is represented by an engraving
on a stone tablet, a spin, a charge, a hole in a punched card, a
mark on paper, or some other equivalent. This ties the handling
of information to all the possibilities and restrictions of our real
physical world, its laws of physics and its storehouse of available
parts.

Principle of Computational Equivalence 30

Stephen Wolfram in 2002:
. . . all processes, whether they are produced by human effort or
occur spontaneously in nature, can be viewed as computations.

. . . almost all processes that are not obviously simple can be
viewed as computations of equivalent sophistication.

Clearly false in the setting of classical computability theory. But if one
works in a physics-like model of computation, it might actually work out.

How About P vs. NP? 31

Here we don’t even know that the classes are distinct (and some notable
researchers like Levin and Knuth claim they are not).

In 1972 Karp identified 3 potentially intermediate problems for NP:

Graph Isomorphism

Nonprime

Linear Inequalities

The Primality Shock 32

Pratt has shown that Primality is in NP (a beautiful application of
number theory). So both Primality and Nonprime are in NP ∩ co-NP,
and thus unlikely to be NP-complete. Sure enough . . .

Theorem (Agrawal-Kayal-Saxena 2002)
Primality is in polynomial time.

Annoyingly, their algorithm uses no more than high-school algebra.

AKS does not seem to provide a computationally superior method,
probabilistic algorithms are far better.

Linear Inequalities 33

In Karp’s version one has to decide if there exists a rational vector x such
that

M · x ≥ a

where M and a are integral.

This comes down to linear programming.

Theorem (Khachiyan 1979)
Linear Programming is in polynomial time.

The proof is quite difficult and does not directly yield superior algorithms
(superior to the standard simplex algorithm).

Ladner’s Theorem 34

Theorem (Ladner 1975)
If P ̸= NP, then there are intermediate problems wrto polynomial time
reducibility.

The proof is quite similar to the Friedberg/Muchnik construction and
produces an entirely artificial example of an intermediate problem.

Since separating P from NP is probably rather difficult it currently looks
quite hopeless to find natural examples.

1 Intermediate Problems

2 Graph Isomorphism

The Problem 36

Problem: Graph Isomorphism (GI)
Instance: Two undirected graphs G and H.
Question: Are G and H isomorphic?

GI is trivially in NP: guess the bijection f : VG → VH and verify that it
is indeed an isomorphism.

But, GI seems too squishy to support any hardness results, none of the
known constructions seems to apply.

Contra Completeness 37

Many NP-complete problems are fairly robust: one can constrain the
instances, but completeness persists.

On the other hand, GI is known to be in polynomial time when

degrees are bounded,
genus is bounded,
tree-width is bounded.

Moreover, if GI were NP-complete, then the polynomial hierarchy would
collapse (something most researchers consider unlikely).

The Sandbox 38

Write G = Gn for the class of all ugraphs on [n].

An isomorph of G is any graph H ∈ G isomorphic to G.

In other words, we need a permutation σ of [n] such that

{i, j} ∈ EG ⇐⇒ {σ(i), σ(j)} ∈ EH

One usually writes Gσ for the graph obtained by applying σ.

So Gσ is just a relabeling of G: we give a different name to each vertex.

Total Recall 39

This is really a right action

G × S → G

where S is the symmetric group on n points. We relabel, but the
topology of the graph is unchanged.

Given two graphs G and H we want to know whether H = Gσ for some
σ ∈ S. Note that we can safely assume that both graphs are connected.

Of course, brute-force is out, S has size exponential size. We need
shortcuts that limit the search space.

Degrees 40

We have already taken care of |VG| = |VH | by considering only G = Gn.
We also need |EG| = |EH |, but we can do slightly better:

Define the degree of a vertex x as

deg(x) = number of vertices adjacent to x

Then we can partition the vertex sets into blocks by collecting points of
the same degree.
Obviously, these blocks must have the same cardinalities in G and H, so
in particular the edge sets must have the same cardinalities.

Degree Partition 41

Gx1 Gx2 d3d2d1 . . . d`

Any isomorphism can then be broken up into smaller maps, one each for
vertex of degree di.

Three Views of Pappus 42

Unfortunately this does not work at all for regular graphs (all vertices
have same degree).

Johnson Graphs 43

A particularly problematic regular graph: a Johnson graph J(n, t).
Vertices are Pt([n]) and x and y are adjacent if |x∆y| = 2.

GI in the Real World 44

There is an excellent algorithm from the 1980s that usually works well,
even on thousands of vertices, but does blow-up exponentially on
occasion.

B. D. McKay, A. Piperno
Practical Graph Isomorphism II
J. Symbolic Computation, 60 (2014) 94–112

So, it would not be a complete shock if GI ultimately wound up in P.

Here is the GI algorithm.

Canonical Labelings 45

The main idea is simple: concoct a reasonably easily computable function

C : G → G

such that C(G) is an isomorph of G and

G ∼= H =⇒ C(G) = C(H)

One way of thinking about this that we need to relabel the vertices of G
in a canonical way, based only on G.
If we similarly relabel any isomorph H of G we wind up with the same
graph.

Bit-Vectors 46

Here is a simple idea that will be useful later.

We can think of G ∈ G as a subset of P2([n]), and thus as a bit-vector
β(G) of length

(
n
2
)
.

1 4 2 3

12 13 14 23 24 34
0 0 1 1 1 0

Hence we could define C(G) to be the isomorph H such that β(H) is
maximal wrto lexicographic order. Alas, this particular relabeling seems
to be quite inefficient.

Splitting Blocks 47

Suppose we have an ordered partition P = (B1, B2, . . . , Br) of [n].
The algorithm will start at the unit partition P = ([n]).
The goal is to produce a discrete partition which has only trivial blocks of
size 1.
Block B requires attention if it contains points u and v such that

deg(u, B′) ̸= deg(v, B′)

where B′ is some block in P (possibly the same as B). Here deg(v, B′)
is the number of nodes adjacent to v in B′.

When a block requires attention we split it into subblocks X1, . . . , Xk

which are sorted according to deg(v, B′) and spliced into the partition,
replacing B.

Equitable Partitions 48

A partition P = (B1, B2, . . . , Br) is equitable if none of its blocks
requires attention.

There is a natural iterative algorithm that computes on input P the
coarsest equitable refinement η(P) of P : keep splitting until no block
requires attention any more. We can even make this deterministic by
always picking the first (B, B′) pair.

For example, if we start with the unit partition, η([n]) only contains
blocks of vertices with the same degree (but possibly a much finer
classification).

This is quite similar to some fast minimization algorithms for DFAs.

Equitable Example 49

Breaking Symmetry 50

Alas, an equitable partition will generally not be discrete.

In this case we pick a non-trivial block B and a vertex u ∈ B and
individualize u: we break B into u and B − u.

The bad news: since all vertices in B look the same to us, we have to
do this for all u in B. The algorithm branches and the branching factor
may be O(n).

Then we apply η again, individualize, apply η, individualize and so on.

Partition Tree 51

This produces a tree T = T (G):

All nodes are labeled by equitable partitions.

The root is labeled by η([n]).

At internal nodes, all vertices in a block are individualized.

The leaves are labeled by discrete partitions.

Any discrete, ordered partition P = ({a1}, {a2}, . . . , {an}) gives rise to a
permutation σ = σ(P) = (a1, a2, . . . , an)−1.

We take the isomorph with the largest bit-vector as the canonical one:

C(G) = H ⇐⇒ H = Gσ and β(H) maximal

Pathetic Example 52

G
1 2 3 4

H
1 4 2 3

graph perms σ bit-vecs
G (1 4 3 2), (2 3 4 1) 0 0 1 1 0 1
H (1 3 2 4), (2 4 1 3) 0 0 1 1 0 1

In this particular case, all permutations generate the same bit-vector.

Pruning the Tree 53

In general, the tree T will be quite large thanks to blind individualization
steps. We need to prune the tree.

Suppose σ and τ are two leaf permutations such that Gσ = Gτ . Then

στ−1 ∈ Aut(G)

Then one can truncate the DFS tree at the lowest common ancestor of
the two leaves. Here is where group theory enters the picture.

More on this and Babai’s algorithm next week.

Babai’s Theorem 54

Theorem (Babai 2015)
There is a quasipolynomial time algorithm for Graph Isomorphism.

Quasipolynomial means: 2O(logk n) for some constant k.

So for k = 1 we would get polynomial time.

Alas, the algorithm piles up the log factors and we have log n terms in
the exponent.

String Isomorphism 55

For any set X and alphabet Σ, refer to ΣX = X → Σ as the collection
of X-strings over Σ. If X is a finite linear order that’s the usual notion.

Note that SX acts naturally on ΣX (left action) via

(σx)(i) = x(σ(i))

Problem: String Isomorphism (SI)
Instance: Two strings x and y in ΣX , a group G

acting on X.
Question: Is y ∈ Gx?

Here G is supposed to be given by a some generators (elements of SX).
We will use this convention from now on.

Key Theorem 56

Theorem (Babai)
Given a group G and an X-string x, one can compute the stabilizer Gx

in quasipolynomial time.

Again, this means that one can compute a set of generators for Gx, not
the actual group.

The idea to use group theory in an attempt to cope with GI goes back to
a paper by E. Luks from the 1980s (where he shows that GI is polynomial
time for bounded degree graphs).

Why? 57

Lemma
Graph Isomorphism is polynomial time reducible to the problem of
computing the automorphism group of a graph.

Proof.
Suppose G1 and G2 are two connected graphs. Form their disjoint union
G = G1 ∪ G2. Then G1 and G2 are isomorphic iff the automorphism
group of G contains a map that swaps G1 and G2.
In fact, there must be a generator with this property. 2

	Intermediate Problems
	Graph Isomorphism

