
Arithmetical Hierarchy

Klaus Sutner
Carnegie Mellon University

1 The Turing Jump

2 Arithmetical Hierarchy

3 Definability

4 Formal Systems

Recall: Oracles 2

We can attach an orcale to a Turing machine without changing the basic
theory.

{e}A eth function computable with oracle A
WA

e = dom{e}A eth r.e. set with oracle A

The constructions are verbatim the same. For example, a universal
Turing machine turns into a universal Turing machine plus oracle.

The Use Principle 3

We continue to confuse a set A ⊆ N with its characteristic function. For
any n write A ↾ n for the following finite approximation to the
characteristic function:

(A ↾ n)(z) ≃

{
A(z) if z < n,
↑ otherwise.

For any such function α write α < A if α = A ↾ n for some n. Then

{e}A(x) = y ⇐⇒ ∃α < A
(
{e}α(x) = y

)
with the understanding that the computation on the right never asks the
oracle any questions outside of its domain.
Of course, a divergent computation may use the oracle infinitely often.

Generalized Halting 4

Definition
Let A ⊆ N. The (Turing) jump of A is defined as

A′ = KA = { e | {e}A(e) ↓ }

So ∅′ = K∅ = K is just the ordinary Halting set.

The nth jump A(n) is obtained by iterating the jump n times.

Undecidability 5

Lemma
A′ is A-semidecidable but not A-decidable.

Proof.
The proof is verbatim the same as for the ordinary Halting problem.

2

So we get an infinite hierarchy of more and more complicated problems:

∅, ∅′, ∅′′, ∅′′′, . . . , ∅(n), . . .

In reality, though, nothing much beyond ∅(4) seems to play a role (except
for problems that lie entirely outside of this hierarchy).

No End in Sight 6

Even worse, we can collect all these sets into a single one, essen-
tially by taking a disjoint union:

∅ω = { ⟨e, n⟩ | e ∈ ∅(n) }

And nothing stops us from forming (∅ω)′, (∅ω)′′ and so on. We
can iterate the jump transfinitely often: ω2 times, ωω times, ε0 =

ωωω
. . .

times.

Headache, anyone?

Jump Properties 7

Let A,B ⊆ N.

Theorem
A′ is r.e. in A.
A′ is not Turing reducible to A.
B is r.e. in A iff B ≤m A′.

Proof.
The first two parts are verbatim re-runs of the oracle-free argument.

Proof, Cont’d 8

For part (3) suppose B is r.e. in A. Hence there is a primitive recursive
function f such that

{f(x)}A(z) ≃

{
0 if x ∈ B,
↑ otherwise.

This function is A-computable since we can replace B on the right by
WA

e .

But then x ∈ B ⇐⇒ f(x) ∈ A′, done.

Proof, Cont’d 9

Lastly suppose B ≤m A′, say, x ∈ B ⇐⇒ f(x) ∈ A′.

To enumerate B given A as oracle, proceed in stages

Stage s:
Compute f(x) for all x = 0, 1, . . . , s− 1.
Enumerate A′

s (use oracle A for this).
If any of the f(x) appear in A′

s, enumerate the corresponding x’s into B.

Turing versus One-Degrees 10

Theorem
A is Turing equivalent to B iff A′ is one-one-equivalent to B′.

Proof.
Assume A ≤T B.
There is a primitive recursive function f such that

{f(e)}B(z) ≃

{
0 if {e}A(z) ↓,
↑ otherwise.

But then e ∈ A′ ⇐⇒ f(e) ∈ B′.
We can force f to be injective by doing something useless like counting
to e first.

Proof, Cont’d 11

Now assume A′ ≤1 B
′, say, e ∈ A′ ⇐⇒ f(e) ∈ B′.

There are a primitive recursive functions g1, g2 such that

{g1(e)}A(z) ≃

{
0 if e ∈ A,
↑ otherwise.

{g2(e)}A(z) ≃

{
0 if e /∈ A,
↑ otherwise.

Now we combine f and the gi to show how a TM with oracle B can
determine membership in A.

Proof, Cont’d 12

e ∈ A ⇐⇒ g1(e) ∈ A′

⇐⇒ f(g1(e)) ∈ B′

⇐⇒ {f(g1(e))}B(f(g1(e))) ↓

⇐⇒ ∃β < B {f(g1(e))}β(f(g1(e))) ↓

Likewise

e /∈ A ⇐⇒ ∃β < B {f(g2(e))}β(f(g2(e))) ↓

Since one of the two computations must converge we can decide which
with oracle B.

The Jump Hierarchy 13

One writes ∅(n) for the Turing degree of of ∅(n). Then

∅ is the degree of all decidable sets.

∅′ is the degree of K.

∅′′ is the degree of FIN and TOT.

∅′′′ is the degree of REC.

A Horror 14

Nothing stops us from constructing

∅ω = { ⟨n, x⟩ | x ∈ ∅(n) }

This is essentially the ω-iterate of the jump on ∅. Note that

∅ <T ∅′ <T ∅′′ <T . . . <T ∅(n) <T . . . <T ∅ω

And, of course, we could apply the jump to ∅ω.
We won’t go there.

Jump Theorem 15

One might wonder which degrees are of the form a′.

Theorem (Friedberg)
Let a ≥T ∅′. Then a = b′ for some b.

In other words, the range of the jump operator is the cone x ≥T ∅′.

1 The Turing Jump

2 Arithmetical Hierarchy

3 Definability

4 Formal Systems

Recall: The World 17

semidecidable

co-semidecidable

decidable

Halting

A Geometric Approach 18

Logically, the step from decidable (or even primitive recursive) to
semidecidable corresponds to unbounded search, or existential
quantification.
The step from semidecidable to co-semidecidable is negation.

Here is an idea: these logical operations have geometric counterparts:
negation corresponds to complements, and existential quantification
corresponds to projections.

What happens if we apply projections and complements systematically to
decidable sets?

Projections and Complements 19

Let’s write down careful definitions for these purely set-theoretic
operations (which might appear to have nothing to do with
computability).

Definition
Let A ⊆ N × Nn where n ≥ 1. The projection of A is the set

proj(A) = { x ∈ Nn | ∃ z (z,x) ∈ A } ⊆ Nn.

The complement of A is understood to be Nn −A.

For any collection C ⊆ P(Nn) of subsets of Nn, n ≥ 1, define proj(C) to
be the collection of all projections of sets in C. Likewise, define compl(C)
to be the collection of all complements of sets in C.

Arithmetical Hierarchy 20

Definition
Define classes of subsets of Nn:

Σ0 = Π0 = all decidable sets

Σk+1 = proj(Πk)

Πk = compl(Σk)

∆k = Σk ∩Πk

Thus, ∆1 is the class of all decidable sets, Σ1 is the class of all
semidecidable sets, and Π1 is the class of all co-semidecidable sets.

A Diagram 21

∆5

Σ4 Π4

∆4

Σ3 Π3

∆3

Σ2 Π2

∆2

Σ1 Π1

∆1

But Does Anyone Really Live There? 22

Consider the primitive recursive set R ⊆ N3: R(s, x, e) if {e} on x
converges in at most s steps.
project

(x, e) ∈ proj(R) ⇐⇒ {e} on x converges

complement

(x, e) ∈ proj(R) ⇐⇒ {e} on x diverges

project

e ∈ proj(proj(R)) ⇐⇒ {e} diverges on some x

complement

e ∈ proj(proj(R)) ⇐⇒ {e} is total

Total Functions 23

This shows that our set

TOT = { e ∈ N | {e} total }

of total computable function is Π2.

Instead of performing projections and complementations, this is easier to
see by counting quantifiers:

e ∈ TOT ⇐⇒ ∀x∃ sR(s, x, e).

Make sure you understand how this logical characterization corresponds
to the previous slide.

Arithmetical Sets 24

Definition
A set A ⊆ Nn is arithmetical if it belongs to some class Σk.

We note in passing that the class of arithmetical sets is countable, so it
follows by cardinal arithmetic that we are missing most subsets of N.

One interesting example of a set we are missing is arithmetical truth: the
set of all (code numbers of) formulas of arithmetic that are true is not an
element in this hierarchy (arithmetic truth a so-called ∆1

1 set, just outside
of our arithmetical sets).

The Bottom of AH 25

Of practical relevance are mostly the first few levels of the arithmetical
hierarchy. We have already seen examples of decidable, semidecidable
sets and co-semidecidable sets.
Here are some other examples.

TOT is Π2.
The indices of all finite r.e. sets form a Σ2 set:

FIN = { e ∈ N | We finite }

The indices of all cofinite r.e. sets form a Σ3 set:

Cof = { e ∈ N | We cofinite }

None of these sets belong to the next lower ∆k level of the hierarchy.

Exercises 26

Exercise
Show that FIN is Σ2 by constructing this set using projections and
complementation.

Exercise
Show that Cof is Σ3 by constructing this set using projections and
complementation.

Exercise
Find the position in the hierarchy of

INF = { e ∈ N | We infinite }.

A Σ3 Property 27

Recall that We = dom{e} is the eth c.e. set.
How hard is it to check, given the index e, whether We is decidable?
As we have seen,

We decidable ⇐⇒ ∃ e′ (We ∩We′ = ∅ ∧We ∪We′ = N)

The second condition in the formula is Π2 and the first is Π1.
Hence the following set is Σ3:

REC = { e ∈ N | We decidable }

Exercise
Carefully check that R is indeed Σ3.

A Σ4 Property 28

It is difficult to find natural examples higher up in the hierarchy.
Here a last one: the indices of all complete c.e. sets form a Σ4 set:

Comp = { e ∈ N | domain of {e} is complete }

For e ∈ Comp we need: there is a reduction {f̂} from K to We.

Exercise
Carefully check that Comp is indeed Σ4.

But Is It Real? 29

So there are several problems that appear at the bottom levels of the AH.
We also know that ∆1 ⫋ Σ1, Π1.

But how about higher up? For example, we don’t yet know that
TOT /∈ ∆2.

Maybe ∆2 = Σk = Πk for all k ≥ 2 (a so-called collapsing hierarchy)?

Completeness 30

Let’s call a set Σk-complete if it is one-one complete for the class of Σk

sets, and likewise for Πk.

So K is Σ1-complete and N −K is Π1-complete.

In a moment we will use Σk-complete sets to show that the levels of the
hierarchy are indeed distinct.

First a bit more background about these classes.

Characterizing Σk 31

Lemma
A ∈ Σk+1 iff A is r.e. in B for some B ∈ Πk ∪Σk.

Proof.
By definition A ∈ Σk+1 if there is some B ∈ Πk such that

x ∈ A ⇐⇒ ∃ z B(z, x)

so that A is r.e. in B.
If A is r.e. in B we have A = dom{e}B . Let

B0 = { (s, x) | {e}B
s (x) ≃ 0 }.

The B0 is Πk and A = projB0.
Oracles are invariant under complementation, so the result also follows
for B ∈ Σ.

2

AR and the Turing Jump 32

Theorem
∅(k) is Σk-complete for k > 0.

Proof. By induction on k, k = 1 is clear.
So assume ∅(k) is Σk-complete and A ∈ Σk+1.
Then A is B-r.e. for some B in Σk by the lemma.
By IH A is also ∅(k)-r.e.
This implies A ≤1 ∅(k+1) by the jump theorem.

2

Another Characterization for Σk 33

Lemma
A ∈ Σk+1 iff A is r.e. in ∅(k).
Likewise, A ∈ ∆k+1 iff A ≤T ∅(k).

Proof.
Part (1) follows from the last theorem.
For part (2) note that A ∈ ∆k+1 iff both A and N −A are r.e. in ∅(k) by
part (1).
The latter condition means both A ≤T ∅(k).

2

The Hierarchy Theorem 34

Corollary
All the inclusions ∆k ⫋ Σk, Πk ⫋ ∆k+1 are proper, k ≥ 1.

Proof.
We know that ∅(k) is Σk-complete.
Assume for a contradiction that ∅(k) ∈ Πk so that ∅(k) ∈ ∆k.
By the last lemma ∅(k) ≤T ∅(k−1), clearly a contradiction.

2

And Examples? 35

The hierarchy is proper, and we have seen examples of natural sets that
appear the first few levels. Alas, thing get murky fairly quickly a few
levels higher up.

For example, to produce an example for a Π5 set we could ask whether a
computable function f enumerates only indices of universal machines:

∀x
(
f(x) is a UTM

)
This is arguably less compelling than, say, TOT.

1 The Turing Jump

2 Arithmetical Hierarchy

3 Definability

4 Formal Systems

The Natural Numbers 37

Arithmetic takes place in the structure of natural numbers:

N = ⟨N,+, ∗, <, 0, 1⟩

Since computability is classically explained in terms of arithmetical
functions (functions on the natural numbers, as opposed to functions on
words which are more natural in complexity theory) one might wonder
what the connection between N is.
The built-in functions addition and multiplication as well as the natural
order relation are all primitive recursive. Where are the computable
functions?

A Language 38

Let us fix a small language L for N : first-order logic language with
function/relation symbols for all the built-ins.
A bounded quantifier is a quantifier of the form

∃x < z φ(x, z)
∀x < z φ(x, z)

z is a free variable here, x is bound.

Definition
A formula of L is ∆0 if it does not contain any unbounded quantifiers.

Example: Primality 39

x div y = ∃ z ≤ y x ∗ z = y

P (x) = ∀ z ≤ x (z div x → z = 1 ∨ z = x) ∧ x > 1

Then
{n ∈ N | N |= P (n) }

is the set of all prime numbers.
Hence the primes can be defined by a ∆0 formula.

Definability 40

In general, given a formula φ(x1, . . . , xn) with n free variables as
indicated defines a set

φN = { (ai, . . . , an) ∈ Nn | N |= φ(a1, . . . , an) }

∆0 and Primitive Recursive 41

Lemma
For any ∆0 formula φ, the set φN is primitive recursive.

Proof.
Induction on the buildup of φ.
This is clear for atomic formulae such as x < y, x ∗ y = z and so forth.
Logical connectives ∧, ∨ and ¬ are OK since primitive recursive relations
are closed under union, intersection and complement.
Bounded quantifiers can be handled by bounded search, see the notes on
primitive recursive functions.

2

Primitive Recursive and ∆0 42

Lemma
For any primitive recursive set A ⊆ N there is a ∆0 formula φ such that
φN = R.

Proof.
Induction on the definition of A (or rather, the primitive recursive
function that defines A).
Obviously the basic primitive recursive functions are ∆0-definable.
∆0-definable functions are closed under composition:

∃ y (φ(x, y) ∧ ψ(y, z))
2

Σk and Πk Formulae 43

A formula is Σ0 or Π0 if it is ∆0.
A formula is Σk+1 if it is obtained from a Πk formula by prefixing it with
a block of existential quantifiers.
A formula is Πk+1 if it is obtained from a Σk formula by prefixing it with
a block of universal quantifiers.

For example,
∀x ∃ y1, y2 φ(x, y1, y2, z)

is Π2 assuming φ is ∆0.

Σ1 Sets 44

A set A ⊆ N is Σ1-definable if for some Σ1 formula φ we have

A = φN

So this means

a ∈ A ⇐⇒ ∃x1, . . . , xk φ(x1, . . . , xk, a)

where φ is ∆0.

Σ1 Is Semidecidable 45

Theorem
A set A ⊆ N is Σ1-definable iff it is semidecidable.

Sketch of proof. Given a Σ1 formula, we can perform an unbounded
search for a witness.

Given a semidecidable set, we can express it’s definition in terms of, say,
Gödel-Herbrand equations as an arithmetic formula, using the standard
coding machinery. The existence of a derivation can be handled by a
single existential quantifier.

2

Σk and Πk Sets 46

A set A ⊆ N is Σn-definable if for some Σn formula φ we have A = φN .
Likewise for Πn-definable.
A set A ⊆ N is ∆n-definable if is Σn-definable and Πn-definable.

Proposition
A set A ⊆ N is Σn-definable iff its complement is Πn-definable.

Corollary
The decidable sets are exactly the ∆1-sets.

Quantifiers 47

Since projection corresponds to existential quantification, and
complementation corresponds to negation, we can characterize the
arithmetical hierarchy as follows.

Lemma
A set A ⊆ N is Σk where k ≥ 1 if, and only if, there is a decidable
relation R ⊆ N × Nk such that

a ∈ A ⇐⇒ ∃x1 ∀x2 . . . Q xk R(a, x1, . . . , xk).

An analogous result holds for Πk and for A ⊆ Nn.

This is the logical, definability-theoretic version of the arithmetical
hierarchy as opposed to the set-operation definition from above. One
nice feature of this version is that it generalizes easily to other contexts
(complexity theory, generalized computability theory).

Arithmetization 48

The intended meaning of

∃x1 ∀x2 . . . Q xk R(a, x1, . . . , xk).

is of course that the variables xi range over N. Thus we have a definition
of A over the structure

⟨N, R⟩

where R ⊆ Nk+1 is decidable.
Since R changes with each arithmetical set A this is not too useful a
description.
More interesting would be a definition of the standard structure of
arithmetical, the natural numbers with the usual operations:

N = ⟨N,+, ·, S, 0, 1, <⟩.

Gödel’s Definition 49

In fact, in 1931 Gödel defined a set A ⊆ Nn to be arithmetical if it could
be defined using addition and multiplication in first order logic with
equality. Thus, arithmetical in the sense of Gödel means definable over

N+,· = ⟨N,+, ·⟩

Note that all the missing operations, constants and relations are easily
definable in terms of addition and multiplication, so there is no loss in
moving to the smaller structure – except that the definitions may become
slightly more complicated.

Exercise
Show how to define constants 0 and 1, the successor function and the
order relation in N+,·

Defining Functions 50

To see the equivalence of Gödel’s approach, let us consider definitions of
number-theoretic functions.

Definition
A relation A ⊆ Nn is definable in elementary arithmetical if there is a
formula φ in the language of arithmetical such that

a ∈ A ⇐⇒ N |= φ(a)

A function is so definable if its graph is:

f(a) = b ⇐⇒ N |= φ(a, b)

The appearance of numerals a to represent the natural number a in the
defining formula is a nuisance but one should distinguish between syntax
and semantics at this point: 3 is a natural number, but it is represented
by the formal term S(S(S(0))).

∆0 Definitions 51

Arbitrary formulae in arithmetical are much too complicated for
computational purposes; we cannot hope to cope with long blocks of
alternating quantifiers. Here is a more modest class of formulae.

Definition
A formula of arithmetical is ∆0 if it is formed from atomic formulae using
only logical connectives and bounded quantifiers.
A relation/function is ∆0-definable if the formula φ above can be chosen
to be ∆0.

In other words, unbounded quantifiers are not allowed. For example,

R(a) = a > 1 ∧ ∀x < a (¬∃ y < a (x · y ≈ a))

provides a ∆0 definition of the primes.

Note that any ∆0-definable relation is automatically decidable.

Defining Computable Functions 52

For the opposite direction we need more than ∆0.
Clearly, the basic functions constants, projections, addition and
multiplication are all ∆0-definable.
However, if we want to compose computable functions we need an
existential quantifier: the intermediate value can only be found by
unbounded search.

(f ◦ g)(x) = y ⇐⇒ ∃ z (g(x) = z ∧ f(z) = y).

Unbounded search in the form of a min operation requires a bounded
universal quantifier. Let f(x) = min

(
z | g(z, x) = 0

)
. Then

f(x) = y ⇐⇒ g(y, x) = 0 ∧ ∀ z < y g(z, x) ̸= 0.

Existential Formulae 53

It follows that for any computable function f we have

f(x) = y ⇐⇒ N |= ∃ z1, . . . , zn φ(z, x, y)

where φ is ∆0.
With more effort one can use the sequence number machinery to collapse
all the existential quantifiers into a single one:

f(x) = y ⇐⇒ N |= ∃ z φ(z, x, y).

Similarly, every semidecidable relation A ⊆ N has a definition

x ∈ A ⇐⇒ N |= ∃ z φ(z, x).

Arithmetical is Definable 54

If we consider definitions with arbitrarily many quantifiers we obtain all
sets in the arithmetical hierarchy.

Theorem
A relation is arithmetical if, and only if, it is definable in elementary
arithmetical.

It should be noted that arithmetical truth itself is not arithmetical: the
assertion “φ is a valid sentence of arithmetical” cannot be described by a
formula of arithmetical.
Here we assume some standard Gödel style coding of formulae. Also note
that validity is used in the old-fashioned way: true over the natural
numbers (not: over all models).

1 The Turing Jump

2 Arithmetical Hierarchy

3 Definability

4 Formal Systems

Computability, Truth and Provability 56

So computability translates into easily definable over N: to determine the
value of a computable function we have to check the truth of a Σ1
formula.
Likewise, to check membership in a semidecidable set we have to check
the truth of a Σ1 formula.
Again, the difference between semidecidable and decidable all boils down
to a single unbounded search: we cannot bound the witness z in
∃ z φ(z, x).

How about provability (as opposed to truth)?
How hard is to prove that f(a) = b for a computable function?

Obviously, the computation of the output constitutes some kind of proof
(provided the calculation terminates): we can easily check that no errors
were made in the computation. But we want a classical proof in some
formal system of arithmetical.

Systems of Arithmetic 57

As usual, we assume a suitable language of arithmetical, some
sublanguage of L(+, ·, S, 0, 1, <).
A standard choice is Peano Arithmetical: axioms for the successor
function, primitive recursive definitions of addition and multiplication plus
and induction axiom (actually, a schema).
The challenge is to determine whether

f(a) = b ⇐⇒ (PA) ⊢ φ(a, b).

when f is computable.

As we will see, one can actually get away with much less; there is a
surprisingly tiny system of arithmetical comprised of just 7 axioms (no
schemata at all) dealing with successor, addition and multiplication.

Numerals 58

Sine we are dealing with arbitrary arithmetical theories we have to be a
bit careful about representations of natural numbers. Our theories have a
constant 0 (and we may safely assume that there is a constant 1).
But, 5 won’t be constant in the language. However, we can easily
represent 5:

5 = S(S(S(S(S(0))))).

This notation is too cumbersome to use in the real world, but it is good
enough for our purposes. More elegant solutions would make it necessary
to increase the complexity of the language quite a bit.

Representability 59

Suppose T is some theory of arithmetical. We need to explain precisely
what it means for T to express facts about some function f .

Definition
A function f : Nn → N is representable in T if there is a formula φ such
that

f(a) = b ⇐⇒ T ⊢ ∀ z (φ(a, z) ↔ z ≈ b).

In this case φ(x, z) represents f .

Hence, for f to be representable we need in particular

T ⊢ φ(a, b).

But, this is not enough: we also need uniqueness:

T ⊢ φ(a, a) ∧ φ(a, v) → u ≈ v.

Simple Examples 60

For example, addition and pairing are represented in any sane theory of
arithmetical by the formulae

φ(x1, x2, z) = x1 + x2 ≈ z

φ(x1, x2, z) = (x1 + x2) · (x1 + x2 + 1) ≈ 2 · z.

Of course, these are cheap shots: we can explicitly write down a term in
the language that represents the function, so

φ(x, z) = t(x) ≈ z

or a slightly more complicated right hand side. Note that all polynomials
can be got this way.
But how about functions not expressed by terms?

Less Simple Examples 61

Predecessor, exponentiation, GCD and so forth come to mind.
The predecessor function is not too bad:

φ(x, z) = (x ≈ 0 ∧ z ≈ 0) ∨ ∃ y (x ≈ S(y) ∧ z ≈ y).

Note that we can bound the quantifier, so there is a ∆0 representation
for predecessor.

But exponentiation is a real problem: the standard p.r. definition cannot
be directly translated into a formula of arithmetical. We would need to
mention φ on the right hand side, which is of course strictly verboten.

Exercise
Show that the GCD function is representable (say, in Peano Arithmetical).

Totality 62

It is important to distinguish between representability of a function f in
some theory and totality: we are considering number-theoretic functions
f : Nn → N which are automatically total.
But there is no requirement for T to prove anything about totality; we do
not insist that

T ⊢ ∀ x ∃ y φ(x, y).

This may seem a bit unnatural, but as it turns out proofs of totality are
quite hard.
There are many computable functions whose totality cannot be proven in
a fairly powerful system such as Peano Arithmetical. Of course, any
real-world computable function can be proven total in (PA).

Closure Properties 63

We need some closure properties for representable functions.
Composition is easy. Here is the case of composition of two unary
functions, represented by φ1 and φ2, respectively.

φ(x, z) = ∃ y (φ(x, y) ∧ φ(y, z))

Note that the quantifier here is unbounded: we cannot predict how far we
have to search to find the value for the first function in the composition.

Exercise
Produce a representation for arbitrary composition.

Exercise
Verify that the definition really works in (PA).

More Closure 64

It is tempting to try to establish closure under primitive recursion, but
that’s rather tedious. A better way is to show closure under regular
search and then show in general that regular search is enough to get
primitive recursion (see the notes on Primitive Recursive Functions).
So suppose g : Nk+1 → N is a function represented by ψ such that

∀ a ∃ b g(b,a) = 0.

Then f = min g is represented by

φ(x, z) = ψ(z,x, 0) ∧ ∀ y < z ¬ψ(y,x, 0).

The right hand side forces z to be the least argument for which g returns
0.

Computable is Representable 65

Theorem
A number-theoretic function is computable if, and only if, it is
representable in Peano Arithmetical.

So Peano’s axioms are powerful enough to express all possible
computations. This may not be terribly surprising, but it turns out that
nowhere near the full power of (PA) is needed in order to get
representations of all computable functions.

Here is an amazingly tiny system due to Robinson.

Robinson’s System Q 66

successor

S(x) ̸= 0 S(x) ≈ S(y) → x ≈ y

addition

x+ 0 ≈ x x+ S(y) ≈ S(x+ y)

multiplication

x · 0 ≈ 0 x · S(y) ≈ (x · y) + x

weak induction

x ̸= 0 → ∃ y S(y) ≈ x

System Q 67

What is called “weak induction” here is nothing but the assertion that
the range of the successor function is everything except for 0.

Theorem
System Q represents all computable functions.

This is truly amazing and somewhat tedious to prove, as one might
imagine. In many regards, Q is really much to small to axiomatize
arithmetical.

Exercise
Show that none of the following theorems of arithmetical are provable in
Q: x ̸= S(x), x+ (y + z) ≈ (x+ y) + z, x+ y ≈ y + x.

Summary 68

Church’s Thesis states that Turing computability precisely captures
the intuitive notion of computability.
For practical algorithms, one needs a much more fine grained analy-
sis based on strict resource bounds.
In the absence of hard lower bounds, hardness and completeness are
helpful to compare the difficulty of problems.
Alas, life becomes much harder in low complexity classes such as P
and NP.

	The Turing Jump
	Arithmetical Hierarchy
	Definability
	Formal Systems

