
CDM

Oracles and Reductions

Klaus Sutner
Carnegie Mellon University



1 Oracles

2 The Turing Jump

3 Many-One Reducibility



Where Are We? 2

We have seen (some of) the fundamental results in computability theory,
including the dreaded recursion theorem.

We also have encountered three complexity classes: decidable,
semidecidable and co-semidecidable. As one might suspect, this is just
the tip of the iceberg.

The next step is to try to get a better understanding of the complexity
landscape.



Halting 3

Our foothold in the world of undecidability is the Halting set

K = { e ∈ N | {e}(e) ↓ }

K immediately produces three types of problems:

decidable

semidecidable

co-semidecidable

Is there more?



In Pictures . . . 4

semidecidable

decidable

co-semidecidable



Bad Answer 5

As usual, we can resort to set theory and counting arguments: there are
2ℵ0 subsets of N.

Only countably many of them are decidable, semidecidable and
co-semidecidable.

So almost all sets A ⊆ N must be more complicated.

True, but fairly useless. We want concrete examples, and perhaps a nice
hierarchy.



Classifying Undecidability 6

What we would like is some notion of reducibility: problem B ⊆ N is
easier than problem A ⊆ N if an algorithm for A could be translated into
an algorithm for B.

Dire Warning:
This does not mean that A is decidable, it just establishes a relationship
between the two problems.

In fact, in a sense this idea is only interesting when A fails to be
decidable. Right?



Turing’s Wild Idea 7

Let us suppose we are supplied with some unspeci-
fied means of solving number-theoretic problems; a
kind of oracle as it were . . . this oracle cannot be
a machine. With the help of the oracle we could
form a new kind of machine (call them o-machines),
having as one of its fundamental processes that of
solving a given number-theoretic problem.



In Pictures . . . 8

Is 17 ∈ A?

Yes.



Quoi? 9

Oracle machines were introduced by Turing in a 1939 paper under
the name of o-machines (as opposed to the original a-machines).
Curiously, he never really exploited this idea (Emil Post did).

As we will see, OTMs provide a powerful way to classify problems
according to their complexity.

Think of the oracle as a data base, created by an alien super-civilization
a trillion years ago. The oracle Turing machine has access to all
their wisdom.



Less Informally 10

Fix some set A ⊆ N. We want to add knowledge about A to a Turing
machine: the machine writes x ∈ N in a special area on the tape and
then enters a magical query state q.

At this point, a genie takes over and checks whether x ∈ A. If so, the
machine state is changed to qY , otherwise it is changed to qN .

Then the normal computation resumes.

Definition
A Turing machine with this added facility is a oracle Turing machine
(OTM) with oracle A.



For Real 11

The last slide is rather vague. But one can make the notion of an oracle
Turing machine precise, the same way as an ordinary Turing machine can
be defined precisely (in the usual pseudo-set-theory setting).

Exercise
Give a precise definition of oracle Turing machines by redefining the
next-step relation.

We write MA
e for the eth OTM with oracle A and {e}A for the

corresponding partial function.



R. I. Soare 12

The Turing o-machine is the single most important
concept in computability, theoretical or practical.



Comments 13

The whole point behind Turing machines is that they are physi-
cally realizable, at least in principle. They capture everything that
is physically possible, and more.

But o-machines are NOT, though some esteemed members of the
hyper-computation community fail to realize that.

The one exception is when the oracle A is decidable: in this case we
can replace magic by another Turing machine.



Decidable Oracles 14

From the perspective of general computability, decidable oracles are
useless: instead of asking the oracle, we can simply run a corresponding
computation.

But this idea is very useful in actual algorithms: suppose, for example,
you have an oracle for SAT: the oracle decides whether a Boolean
formula is satisfiable.

Then we can use this oracle to construct a satisfying assignment.
This can help to organize the logic of a real algorithm.



The Key Generalization 15

We can now generalize all the basic notions we have relative to an
arbitrary oracle A: we copy our old definitions, replacing TM by OTM
everywhere.

A-computable

A-decidable

A-semidecidable

So computable is ∅-computable and so forth.



More Precisely . . . 16

Definition
Let A, B ⊆ N. A partial function f : Nk ↛ N is computable in A or
A-computable if there is an oracle Turing machine that computes f using
A as an oracle.
A set B is Turing-reducible to A or A-decidable if its characteristic
function is A-computable.
A set B is semidecidable in A or A-semidecidable if its
semi-characteristic function is A-computable.

Turing reducibility is usually written

B ≤T A



A Meta-Theorem 17

As it turns out, the machinery we developed for computable functions
carries over to A-computable functions, just about verbatim.
In particular we still have a Kleene style enumeration

{e}A

of all A-computable functions.

Then B ≤T A means

B(x) ≃ {e}A(x)

for some index e (we abuse notation slightly by writing B for the
characteristic function of B).



Reduction to Halting 18

Claim
Every semidecidable set is K-decidable.

Proof. Here is an overly careful argument.
Let W be semidecidable. Define the following function:

g(x, z) ≃

{
0 if x ∈ W ,

↑ otherwise.

Clearly, g is computable and has some index ĝ. Then

g(x, z) ≃ {ĝ}(x, z) ≃ {S1
1(ĝ, x)}(z)

by the S-m-n theorem.



The map f(x) := S1
1(ĝ, x) is primitive recursive.

But then x ∈ W ⇐⇒ f(x) ∈ K, done. 2

Usually this would be abbreviated to something a bit more cryptic like
this:

Let

{f(x)}(z) ≃

{
0 if x ∈ W ,

↑ otherwise.

Then f is primitive recursive, blahblahblah, done.



Truth in Advertising 20

Note that the critical point here is that an index for the last function is
easily computable. One can prove this formally by applying the S-m-n
theorem, but usually no one bothers.

Since an oracle TM can compute f , it can check membership in W by
making just one call to the oracle and returning the same answer true or
false (a bit like tail recursion).

This is a very special case, in general multiple calls are needed and the
OTM has to do more work than just computing a primitive recursive
function.

More on this special type of reduction (many-one reduction) later.



A Preorder 21

Proposition
Turing reducibility is a preorder (reflexive and transitive):

A ≤T A.
A ≤T B and B ≤T C implies A ≤T C.

Proof. Every call to oracle B in the algorithm for A can be replaced by
a computation which uses calls to oracle C.
The actual computation can be absorbed by the algorithm, so that all
that remains are the calls to oracle C.

2

Of course, ≤T is not symmetric. There even are incomparable
semidecidable sets, but that’s more complicated.



Turing Degrees 22

So we can lump together problems that are mutually reducible.

Definition
Two sets A and B are Turing equivalent if

A ≤T B and B ≤T A

This defines an equivalence relation ≡T whose equivalence classes are
called Turing degrees.

Notation:

degT (A) = { B | A ≡T B }



Degrees of Unsolvability 23

Historically Turing degrees are also called degrees of unsolvability since
they measure the distance between a problem and solvability.

The only degree that is easy to describe is

degT (∅) = all decidable sets.

How about the degree of the Halting Problem, degT (K)?

Note that by definition Turing reducibility can handle complements:

A ≤T A

So we cannot conclude that A ≤T K implies that A is semidecidable.

So degT (K) contains all semidecidable sets and all co-semidecidable sets.
Unfortunately, there is even more, but it’s a bit difficult to describe these
additional sets; we’ll skip.



Just Two Results 24

Theorem (Friedberg, Muchnik 1955/57)
There exist two semidecidable sets that are not comparable wrto Turing
reducibility.

Theorem (Sacks 1964)
Let A and B semidecidable such that A <T B. Then there exists a
semidecidable C such that A <T C <T B.



How Many Degrees 25

Note that degT (A) is always a countable collection, no matter what
A ⊆ N is.

It follows from standard general abstract nonsense (ℵ0 < 2ℵ0) that there
must be uncountably many Turing degrees.

OK, but we live in the computational universe and we would much prefer
more concrete examples: we would like to pin down some degrees that
have clear computational meaning, other than just degT (∅) or degT (K).



A Convergence Question 26

Here is a failed attempt. Consider the following question, an apparently
harder variant of the Halting problem:

Does {e} converge on some input?

Claim
This problem is semidecidable but not decidable.

Proof.
We need to search for some x such that {e}(x) ↓.
Note that we cannot simply start by computing {e}(0), then {e}(1) and
so on.



Dovetailing 27

Instead, we organize a big parallel computation, organized in stages
σ ≥ 0.

Stage σ:
Compute {e}σ(x) for all x < σ.
If one of them terminates, halt.
Otherwise, go to stage σ+.

This method is used in many places and referred to as dovetailing. It is
quite similar to the standard argument that N × N is countable.



Hardness 28

To show that convergence is not decidable, note that there is a primitive
recursive function f such that

{f(e)}(z) ≃

{
0 if {e}(e) ↓

↑ otherwise.

But then e ∈ K iff {f(e)} converges on some input.

Or, more explicitly, writing K2 for the set of Yes-instances of our
convergence problem, we have

e ∈ K ⇐⇒ f(e) ∈ K2

Since f is computable, K2 cannot be decidable. 2



Same Old 29

Note that we could be lazy and simply use Rice’s theorem: we are asking
whether We ̸= ∅.

But then We = We′ clearly implies e ∈ K2 ⇐⇒ e′ ∈ K2.

Also, ∅ ≠ K2 ̸= N. Done.

But our proof shows a bit more: K ≤T K2. Since K2 ≤T K we have
degT (K) = degT (K2).



A Small Hierarchy 30

Here is a better attempt. Consider the following classes of r.e. sets:

FIN = { e ∈ N | We is finite }
INF = { e ∈ N | We is infinite }

TOT = { e ∈ N | We = N }
REC = { e ∈ N | We is decidable }

By Rice’s theorem, they are all undecidable. But we would like to
understand their Turing degrees.

FIN ≡T INF is clear.



How Bad Can It Be? 31

Intuitively, FIN is not computable since

e ∈ FIN ⇐⇒ ∃ b ∀ x, σ (x ∈ We,σ ⇒ x < b)

But REC is even worse:

e ∈ REC ⇐⇒ ∃ e′ (We = N − We′)
⇐⇒ ∃ e′ ∀ x (∀ σ (We,σ ∩ We′,σ = ∅) ∧ ∃ τ (x ∈ We,τ ∪ We′,σ))

Theorem

∅ <T K <T FIN <T REC

FIN ≡T INF ≡T TOT



One Proof 32

We will show that

K ≤T INF

To see this, note that there is a primitive recursive function f such that

{f(e)}(z) ≃

{
0 if e ∈ K,
↑ otherwise.

Then e ∈ K ⇐⇒ f(e) ∈ INF, done.



Another Proof 33

We will show that

INF ≤T TOT

As a warmup exercise, consider the downward closure operation

dc(A) = { x ∈ N | ∃ a ∈ A (a ≥ x) }

So dc({123, 1010, 100!}) = {0, 1, . . . , 100!}) and dc(Primes) = N.

In general

dc(A) =
{

{0, . . . , max A} if A is finite,
N otherwise.



Effectivizing the Argument 34

So dc(A) translates from infinite to total, fairly close to what we want.

But note that dc(W ) is r.e. whenever W is r.e. Moreover, we can
compute an index for dc(W ) from an index for W . In fact, there is a
primitive recursive function f that does it:

{f(e)}(z) ≃

{
0 if ∃ u (u ≥ z ∧ u ∈ We),

↑ otherwise.

Then We is infinite iff Wf(e) = N.

Hence we have the desired reduction: e ∈ INF ⇐⇒ f(e) ∈ TOT, done.



1 Oracles

2 The Turing Jump

3 Many-One Reducibility



Recall: Oracles 36

We can attach an orcale to a Turing machine without changing the basic
theory.

{e}A eth function computable with oracle A

W A
e = dom{e}A eth r.e. set with oracle A

The constructions are verbatim the same. For example, a universal
Turing machine turns into a universal Turing machine plus oracle.



The Use Principle 37

We continue to confuse a set A ⊆ N with its characteristic function. For
any n write A ↾ n for the following finite approximation to the
characteristic function:

(A ↾ n)(z) ≃

{
A(z) if z < n,
↑ otherwise.

For any such function α write α < A if α = A ↾ n for some n. Then

{e}A(x) = y ⇐⇒ ∃ α < A
(
{e}α(x) = y

)
with the understanding that the computation on the right never asks the
oracle any questions outside of its domain.
Of course, a divergent computation may use the oracle infinitely often.



Generalized Halting 38

Definition
Let A ⊆ N. The (Turing) jump of A is defined as

A′ = KA = { e | {e}A(e) ↓ }

So ∅′ = K∅ = K is just the ordinary Halting set.

The nth jump A(n) is obtained by iterating the jump n times.



Undecidability 39

Lemma
A′ is A-semidecidable but not A-decidable.

Proof.
The proof is verbatim the same as for the ordinary Halting problem.

2

So we get an infinite hierarchy of more and more complicated problems:

∅, ∅′, ∅′′, ∅′′′, . . . , ∅(n), . . .

In reality, though, nothing much beyond ∅(4) seems to play a role (except
for problems that lie entirely outside of this hierarchy).



No End in Sight 40

Even worse, we can collect all these sets into a single one, essen-
tially by taking a disjoint union:

∅ω = { ⟨e, n⟩ | e ∈ ∅(n) }

And nothing stops us from forming (∅ω)′, (∅ω)′′ and so on. We
can iterate the jump transfinitely often: ω2 times, ωω times, ε0 =

ωωω
. . .

times.

Headache, anyone?



Jump Properties 41

Let A, B ⊆ N.

Theorem
A′ is r.e. in A.
A′ is not Turing reducible to A.
B is r.e. in A iff B ≤m A′.

Proof.
The first two parts are verbatim re-runs of the oracle-free argument.



Proof, Cont’d 42

For part (3) suppose B is r.e. in A. Hence there is a primitive recursive
function f such that

{f(x)}A(z) ≃

{
0 if x ∈ B,
↑ otherwise.

This function is A-computable since we can replace B on the right by
W A

e .

But then x ∈ B ⇐⇒ f(x) ∈ A′, done.



Proof, Cont’d 43

Lastly suppose B ≤m A′, say, x ∈ B ⇐⇒ f(x) ∈ A′.

To enumerate B given A as oracle, proceed in stages

Stage s:
Compute f(x) for all x = 0, 1, . . . , s − 1.
Enumerate A′

s (use oracle A for this).
If any of the f(x) appear in A′

s, enumerate the corresponding x’s into B.



Turing versus One-Degrees 44

Theorem
A is Turing equivalent to B iff A′ is one-one-equivalent to B′.

Proof.
Assume A ≤T B.
There is a primitive recursive function f such that

{f(e)}B(z) ≃

{
0 if {e}A(z) ↓,
↑ otherwise.

But then e ∈ A′ ⇐⇒ f(e) ∈ B′.
We can force f to be injective by doing something useless like counting
to e first.



Proof, Cont’d 45

Now assume A′ ≤1 B′, say, e ∈ A′ ⇐⇒ f(e) ∈ B′.

There are a primitive recursive functions g1, g2 such that

{g1(e)}A(z) ≃

{
0 if e ∈ A,
↑ otherwise.

{g2(e)}A(z) ≃

{
0 if e /∈ A,
↑ otherwise.

Now we combine f and the gi to show how a TM with oracle B can
determine membership in A.



Proof, Cont’d 46

e ∈ A ⇐⇒ g1(e) ∈ A′

⇐⇒ f(g1(e)) ∈ B′

⇐⇒ {f(g1(e))}B(f(g1(e))) ↓

⇐⇒ ∃ β < B {f(g1(e))}β(f(g1(e))) ↓

Likewise

e /∈ A ⇐⇒ ∃ β < B {f(g2(e))}β(f(g2(e))) ↓

Since one of the two computations must converge we can decide which
with oracle B.



The Jump Hierarchy 47

One writes ∅(n) for the Turing degree of of ∅(n). Then

∅ is the degree of all decidable sets.

∅′ is the degree of K.

∅′′ is the degree of FIN and TOT.

∅′′′ is the degree of REC.



A Horror 48

Nothing stops us from constructing

∅ω = { ⟨n, x⟩ | x ∈ ∅(n) }

This is essentially the ω-iterate of the jump on ∅. Note that

∅ <T ∅′ <T ∅′′ <T . . . <T ∅(n) <T . . . <T ∅ω

And, of course, we could apply the jump to ∅ω.
We won’t go there.



Jump Theorem 49

One might wonder which degrees are of the form a′.

Theorem (Friedberg)
Let a ≥T ∅′. Then a = b′ for some b.

In other words, the range of the jump operator is the cone x ≥T ∅′.



1 Oracles

2 The Turing Jump

3 Many-One Reducibility



Better Reductions 51

The fact that Turing degrees are closed under complements wrecks
semidecidability. In a sense, this means that Turing reducibility is too
coarse for semidecidable sets.

It would be nice to have some other notion of reduction ⪯ such that

B ⪯ A, A semidecidable implies B semidecidable

Finding the right notion of reducibility is absolutely critical for lower
complexity classes like NP.



Many-One 52

Here is a type of reduction that is suggested by some of the examples
above.

Definition
Let A, B ⊆ N. B is many-one reducible to A if there exists a computable
function f : N → N such that

x ∈ B ⇐⇒ f(x) ∈ A.

If function f is in addition injective then B is one-one reducible to A.

In symbols: B ≤m A and B ≤1 A.



Nothing New 53

In other words: we can only ask a single question of the oracle, and
whatever answer the oracle returns is also our answer.
We have already seen several examples of this kind of reduction, they
seem to be quite natural.

One-one reductions in addition are required to ask different questions to
the oracle for different inputs.

This is actually a little bit weird, there is no good algorithmic reason why
two instances x and x′ should not produce the same queries
f(x) = f(x′).

Of course, set-theoretically this makes perfect sense. And, it turns out to
produce some nice results.



Downward Closure 54

Proposition

A ≤1 B implies A ≤m B implies A ≤T B

The opposite implications are all false, but it requires a bit of effort to
separate many-one and one-one reductions.

Proposition

A ≤m B and B decidable implies that A is decidable.

A ≤m B and B semidecidable implies that A is semidecidable.



Lower Bounds 55

Our old proofs have already quietly used many-one reductions.

Lemma
All semidecidable sets are many-one reducible to K.

Lemma
K ≤m INF and K ≤m TOT



Many-One and One-One Degrees 56

As before with Turing reductions one can collect mutually reducible sets
into a degree and obtains equivalence relations.

The equivalence classes are correspondingly called many-one degrees and
one-one degrees.

In symbols:

A ≡m B and A ≡1 B

So every many-one degree is contained in a Turing degree but not the
other way around, we get a finer partition with these limited types of
reductions.



Hardness and Completeness 57

Definition
A set C ⊆ N is many-one hard (one-one hard, Turing hard) for the class
of semidecidable sets if for all A r.e.: A ≤m C (or A ≤1 C, A ≤T C).
C is many-one complete (one-one complete, Turing complete) for the
class of semidecidable sets sets if C is r.e. and C is many-one hard
(one-one hard, Turing hard).

It is not difficult to fabricate a hard set: just take the disjoint union over
the whole class. But completeness can be difficult.

So we know that K is many-one complete for the class of semidecidable
sets.



Future Attractions 58

In general, one considers a class C ⊆ P(N) of sets.

Given a reducibility ⪯ (a preorder on P(N)) we can define
(C, ⪯)-hardness: A is hard if

∀ X ∈ C (X ⪯ A)

(C, ⪯)-completeness means: (C, ⪯)-hardness plus membership in C.

We will use this approach over and over in complexity theory.



One-One Completeness 59

Lemma
The Halting set K is one-one complete (for semidecidable sets).

Proof.
Suppose A is r.e. We already know that there is a primitive recursive
function f such that

{f(x)}(z) =
{

0 if x ∈ A,
↑ otherwise.

So x ∈ A ⇐⇒ f(x) ∈ K.

f will be injective in any reasonable environment. If not, we can insist
that {f(x)} first counts to x before it starts the actual computation.

2



Variants 60

One can define variants of K that are easily seen to lie in the same
one-one degree – and are thus really the same as K from the point of
view of information content.

K0 = { ⟨e, x⟩ | x ∈ We }
K1 = { e | We ̸= ∅ }

Here ⟨e, x⟩ is understood to be a standard coding function.
Note that K0 is trivially one-one hard for r.e.: we have coded all r.e. sets
into a single one. The important fact is that K0 is itself still r.e. (since
there are universal machines).

Proposition
K, K0 and K1 are all one-one equivalent.

Proof.
Use the same trick as in the last lemma.

2



Recursive Permutations 61

Suppose f : N → N is a computable permutation. For example, f could
interchange 2x and 2x + 1 (yes, yes, boring).
Clearly f(A) has the same complexity as A: we can use f to translate
back and forth. This idea is captured in the next definition.

Definition
Two sets A, B ⊆ N are recursively isomorphic if there is a recursive
permutation p of N such that p(A) = B.
In symbols: A ≡ B.

For example, all infinite and co-infinite decidable sets are recursively
isomorphic (e.g., 42N + 17 and the primes).



Myhill’s Isomorphism theorem 62

There is an analogue to the Schröder-Bernstein-Cantor theorem
(Dedekind actually had a much better proof) that associates the
existence of computable injections in both directions with the existence
of a computable bijection.

Theorem (Myhill 1955)

A ≡ B ⇐⇒ A ≡1 B.

In other words, the one-one degrees are simply obtained by applying a
recursive permutation to the given set.

Thus K, K0 and K1 can all be obtained from each other by recursive
permutations of N.



Proof Sketch 63

Suppose A ≤1 B via f and B ≤1 A via g.
We may safely assume that A and B are both infinite.
We define a computable permutation h in stages using a zig-zag
construction: h =

⋃
hσ where hσ is finite and hσ is computable

uniformly in σ.

Stage σ = 0: h0 = ∅

Stage σ > 0, even:

Assume that H = h<σ is injective and
∀ x ∈ dom H (x ∈ A ⇐⇒ H(x) ∈ B).
We make sure that h is defined on argument x = σ/2.
If already H(x) ↓, do nothing and go to the next stage.



Proof Cont’d. 64

Otherwise compute the zig-zags

f(x), f ◦ H−1 ◦ f(x), f ◦ (H−1 ◦ f)2(x), . . .

As f and H are injective, there can be no repetitions in this sequence.
Hence for some i: y = f ◦ (H−1 ◦ f)i(x) /∈ rng H.
Set hσ(x) = y.

Stage σ > 0, odd:
Entirely similar, replace f , h<σ by g, h−1

<σ.
2


	Oracles
	The Turing Jump
	Many-One Reducibility

