
CDM

Applications of Finite Fields

Klaus Sutner

Carnegie Mellon University
Fall 2023

Warning 1

This lecture contains a number of “dirty tricks,” rather than the supremely
elegant and deeply rooted mathematical ideas that you have become
accustomed to in this class.

Think of it as the engineering approach: some clever trick may just be an
opportunistic hack, but, boy, does it ever work well.

1 Implementing Finite Fields

2 Discrete Logarithms

3 Advanced Encryption Standard

What To Implement 3

In order to implement a finite field we need a data structure to represent field
elements and operations on this data structure to perform

addition
multiplication
reciprocals, division
exponentiation

Subtraction is essentially the same as addition and requires no special attention.
But, anything to do with multiplication is by no means trivial. In fact, there is
an annual international conference that is dedicated to the implementation of
finite fields.

WAIFI Conference 4

Theory of finite field arithmetic:
Bases (canonical, normal, dual, weakly dual, triangular ...)
Polynomial factorization, irreducible polynomials
Primitive elements
Prime fields, binary fields, extension fields, composite fields, tower fields ...
Elliptic and Hyperelliptic curves

Hardware/Software implementation of finite field arithmetic:
Optimal arithmetic modules
Design and implementation of finite field arithmetic processors
Design and implementation of arithmetic algorithms
Pseudorandom number generators
Hardware/Software Co-design
IP (Intellectual Property) components
Field programmable and reconfigurable systems

Applications:
Cryptography
Communication systems
Error correcting codes
Quantum computing

Classes of Implementations 5

Our characterization of finite fields as quotients of polynomial rings provides a
general method of implementation, and even a reasonably efficient one.
Still, it is a good idea to organize things into several categories, with different
algorithmic answers.

Prime fields Zp

Characteristic 2, F2k

General case Fpk

For simplicity let’s assume that the characteristic p is reasonably small so that
arithmetic in Zp is O(1).

Note that we are not necessarily looking for asymptotic speed-ups here,
constant factors can be quite interesting.

Trick 1: Montgomery Reduction 6

We know how to handle Fp = Zp: we need standard addition and
multiplication in combination with remainder computations. The Extended
Euclidean Algorithm can be used to compute inverses. No problem.

Yet even in Zp there is room for some clever computational tricks.

Here is one way to lower the cost of multiplication in the field.

This requires a bit of pre-computation and is only of interest when lots of field
multiplications are needed. Suppose we have characteristic p > 2.

Messing Things Up 7

The key is to use a strange representation of F× that seems to just make a
mess.

Pick R > p coprime, typically R = 2k.

Represent modular number x by R̂(x) where

R̂ : Zp −→ Zp

x 7−→ R · x mod p

Since p and R are coprime, the map R̂ is a bijection: we are just permuting the
field elements.

No Morphism 8

Careful, though, R̂ is not a field isomorphism. Actually, for addition, there is no
problem:

R̂(a + b) = R̂(a) + R̂(b) (mod p)

but, unfortunately:

R̂(a · b) = R̂(a) · R̂(b) · R−1 (mod p)

To get mileage out of R̂ we need a cheap way to perform reductions:

x ; xR−1 mod p

Cheap here just means that we should do better than doing vanilla mod p
operations.

Performing Montgomery Reduction 9

How can we do the reduction cheaply? First, precompute α = −p−1 mod R.
Suppose we have an integer x where 0 ≤ x < R p.

Compute x′ = xα mod R.

Then (x + x′p)/R is an integer and

(x + x′p)/R = xR−1 mod p.

Recall that R = 2k, so these operations only require integer multiplication and
some shifting.

This is more compelling by looking at the actual code.

Montgomery Reduction, Code 10

Here is a typical implementation for R = 216 and some prime p, 2 < p < R.

#define MASK 65535UL // 2ˆ16 - 1
#define SHFT 16;

// precompute alpha (Euclidean algorithm)

x0 = x & MASK;
x0 = (x0 * alpha) & MASK;
x += x0 * p;
x >>= SHFT;
return(x > p ? x-p : x);

The only expensive operations are two multiplications.

Example p = 17 11

Let p = 17 and pick R = 64 so that α = 15.
Here are the field elements ̸= 0 and their representations:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R̂(a) 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4

For example, for 5 × 7 = 1 mod p we get x = 14 × 6 = 84 and thus

x0 = 84 × 15 mod 64 = 44

(x + x0p)/R = 832/64 = 13

Indeed 13 corresponds to 1 in our representation, so everything is fine.

Trick 2: Logarithm Tables 12

Given a generator g for F× in a reasonably small field we can pre-compute and
store a logarithm table

(h, i) ∈ F× × N where h = gi

We also need the inverse table with entries (i, h). For example, for F28 the
tables require only 512 bytes of memory.

Multiplication is then reduced to table lookups and some (machine-) integer
addition and thus very fast.

This technique is used for example in the cryptographic system AES, see below.

Characteristic 2 13

These log tables can also be used to speed up computation in larger fields of
characteristic 2: instead of dealing directly with F2k we think of it as an
extension of F2ℓ where ℓ is small. We have a tower of fields

F2 ⊆ F2ℓ ⊆ F2k

For example, suppose we are calculating in F28 , so a typical element is
a = x7 + x6 + x3 + 1 or, as a coefficient vector over F2, (1, 1, 0, 0, 1, 0, 0, 1).
By grouping the coefficients into blocks of 2 we get (3, 0, 2, 1) and can think of
a as 3z3 + 2z + 1 ∈ F22 [z].

One can verify that ℓ needs to be a divisor of k for F2ℓ to be a subfield of F2k .

A popular choice is ℓ = 8 so that the coefficients in the intermediate fields are
bytes.

Speedup 14

One uses a log table for the intermediate field F2ℓ , so arithmetic there is very
fast (comparable to the prime field F2).

The main field can now be implemented by using polynomials over F2ℓ [x] of
degree less than k/ℓ rather than the original degree less than k.

So there is a trade-off: the ground field becomes more complicated (though we
can keep arithmetic there very fast using tables), but the degree of the
polynomials decreases, so we are dealing with smaller bases.

Finding “optimal” implementations of finite fields is not easy.

1 Implementing Finite Fields

2 Discrete Logarithms

3 Advanced Encryption Standard

Logarithms in a Group 16

Suppose G is some cyclic finite group with generator g and cardinality n. We
can easily exponentiate in G, the operation

e ; ge

takes O(M log e) steps where M is the cost of a single multiplication in G. But
going backwards is apparently hard in many groups:

Given a ∈ G, find e such that ge = a.

This is known as the discrete logarithm problem.

Of course, e = logg a is trivially computable by a brute force search, but we are
here interested in efficient computation when n is large.

Diffie and Hellman 17

In 1976, Whit Diffie and Martin Hellman seized on this apparent difficulty to
propose a cryptographic scheme that promises

Secure communication using only insecure channels.

This almost seems logically impossible: if the eavesdropper has complete
knowledge about the encryption method used and has full access to the
communication channel it would seem that we cannot keep any secret.

Note that this is the idea that gave rise to RSA.

The group used in Diffie/Hellman is the multiplicative group of a finite field F⋆:
we can choose the size and implement the group operation quite efficiently.

Diffie/Hellman Algorithm 18

Alice and Bob agree on generator g in some finite field F = Fpk .

Alice generates random number x, computes a = gx in F.
Alice sends a to Bob.

Bob generates random number y, computes b = gy in F.
Bob sends b to Alice.

Both Alice and Bob can now compute

c = gxy = ay = bx

and use it as a secret key (for some other encryption algorithm).

Evilestdoer Charlie knows the algorithm, F, g, a and b, but not x and y.

Apparently, Charlie cannot determine c without a huge search, so we only need
to make F large enough to foil his efforts.

A Challenge 19

Diffie/Hellman seems to hold the promise of secure communication over utterly
insecure channels.

Great, but now there is an immediate challenge: can one break Diffie/Hellman,
at least in some special cases.

“Break” would mean that we are happy to invest quite a bit of computation,
just not the full brute-force exponential seach that seems to be necessary to
destray the schema.

Shanks Baby/Giant Steps 20

In other words: is there anything we an do to speed up computation of
logarithms in a finite field?

Suppose g is a generator of the multiplicative subgroup and a ̸= 0 is some
element in a field of size q = pk.
Let m = ⌈√

q⌉ and compute two lists

ag−i where 0 ≤ i < m, and

gmj where 0 ≤ j < m.

Then check for a common entry in the two lists: this produces ag−i = gmj ,
whence a = gmj+i.

So we have essentially written the logarithm as a two-digit number in base m.

Efficiency 21

To check for a common element we can use hashing. Of course, one need not
wait till the lists are complete to check for a match.

The baby-step/giant-step method requires O(√q log q) time and space O(√q).

This may not seem overly impressive, but it is a huge improvement over the
standard O(q) time algorithm (though that runs constant space).

Note that a cryptographic attack may well be worth this much computation.
The NSA sure won’t mind.

Pollard’s Rho Method 22

This should be called Pollard’s Lasso method (in particular since the second
algorithm in the paper is about “catching kangaroos”), but it’s too late now.

A Rohrschach test:

If you have a classical education, you will see a ρ .
If you’re a cowboy, you will see a lasso.

Random Maps 23

The motivation for this method is a bit strange. Consider a random function
f : A → A where A has size n.
Then the expected value of some key parameters of the functional digraph of f
are as follows:

components 1
2 log n

leaf nodes e−1n

recurrent nodes
√

πn/2
transient length

√
πn/8

period length
√

πn/8

The expected lengths of the longest transient/cycle are also c1/2
√

n where
c1 ≈ 1.74 and c2 ≈ 0.78.

Computing Transient and Period 24

For simplicity we can think of the expected value of transient length t and
period length p of a random point a in A as

√
n.

We know an elegant algorithm to compute these parameters: Floyd’s trick.
More precisely, we can compute t and p in expected time O(

√
n) using O(1)

space (we only need to store a small constant number of elements in A).

Wild Idea:
Can we compute a sequence (xi) of elements as in Shanks’ al-
gorithm that behaves like a (pseudo-) random sequence so that
xi = x2i allows us to compute a discrete logarithm?

The Map 25

We need a “random” map.
To this end we first split the group G into three sets G1, G2 and G3 of
approximately equal size (sets, not subgroups, so this will be easy in practical
situations). Any ham-fisted approach will do.

Now, given a generator g and some element a, define f : G → G as follows:

f(x) =

gx if x ∈ G1,

x2 if x ∈ G2,

ax otherwise.

Of course, f is perfectly deterministic (at least given the partition of G).

The Orbits 26

Consider the orbit (xi) of 1 under f , x0 = 1.

Clearly, all the elements have the form aαi gβi and the exponents are updated
according to

(αi+1, βi+1) =

(αi, βi + 1) if x ∈ G1,

(2αi, 2βi) if x ∈ G2,

(αi + 1, βi) otherwise.

Since the partition of G is random, the three steps are chosen randomly (more
or less).

Use Floyd 27

Moreover, using Floyd’s method we can find the minimal index e such that
xe = x2e, i.e.,

aαe gβe = aα2e gβ2e

But then

aαe−α2e = gβ2e−βe

This equality does not directly solve the discrete logarithm problem but it can
help a lot to compute the discrete logarithm.
Note that for cryptographic application any such weakness is potentially fatal:
a good method must be secure under any and all circumstances.

Example: Z999959 28

Consider the multiplicative group of Zp where p = 999959, and let g = 7 and
a = 3.
Running the algorithm produces e = 1174 and xe = 11400, plus the identity

3310686 = 7764000 (mod p)

A classical case of “close, but no cigar”: we want to compute the logarithm of
3 with respect to generator 7, some η such that: 3 = 7η (mod p).

But perhaps we squeeze a bit more information out of this identity? The
identity lives over Z⋆

p.

Magic 29

Use the Extended Euclidean algorithm to get

gcd(310686, p − 1) = 2
= 148845 · 310686 − 46246 · 999958

Then raise 3310686 to the 148845 power mod p to obtain

32 = 7356324 (mod p)
3 = ±7178162 (mod p)

We can simply check the two cases and find that in Zp: log7 3 = 178162.

How Random Is It? 30

200 400 600 800 1000 1200

200000

400000

600000

800000

1´10
6

A plot of the orbit of 1 given our a and g.

1 Implementing Finite Fields

2 Discrete Logarithms

3 Advanced Encryption Standard

The History 32

The now classical DES (data encryption standard) was officially adopted in
1977. It is based on–rather too short–keys of length 56 bits and has since fallen
prey to Moore’s law: DES can now be broken in a distributed attack in a
matter of hours.

In September 1997, NIST issued a Federal Register notice soliciting an
unclassified, publicly disclosed encryption algorithm.
15 candidate algorithms were submitted and closely scrutinized. In 2000 the
NIST selected the Rijndael algorithm by Joan Daemen and Vincent Rijmen as
the new standard.
It is now enshrined in the Federal Information Processing Standard (FIPS) for
the Advanced Encryption Standard, FIPS-197, see

http://csrc.nist.gov/CryptoToolkit/aes

http://csrc.nist.gov/CryptoToolkit/aes

Stream Ciphers 33

DES and AES are both based on ideas that first appeared in Lucifer, an
encryption system developed mainly by IBM: the input message is chopped into
fixed-size block of bits, which are then clobbered using a key.

Use combinatorics and algebra to mangle a block of bits.

Cleverly incorporate the key into this mangling process.

Use multiple rounds to make sure the final result is sufficiently compli-
cated.

Each round uses a subkey (aka round key) that is generated from the main key.

And, of course, everything has to be easily reversible when the key is known.

Again: Iteration 34

k1 k2 k3 k4

cm

Each coding box is relatively simple, and may not provide a safe encoding. But
a sufficiently long chain is hard to crack without knowledge of the master key.

Lucifer 35

There are several patented variants, all based on substitution-permutation
networks (so-called Feistel networks) that mangle bits and mix in the key in
some clever way. Up to 16 rounds are used to foil attacks.

The block size and key size vary from 48 to 128 bits.

A pleasant feature is that decryption is very similar to encryption, so hardware
can be reused.

Alas, the devil is in the details†, and Lucifer suffered from security issues.

†No pun intended.

https://en.wikipedia.org/wiki/Feistel_cipher

DES Outline 36

DES encrypts blocks of 64 bits, using a key of 56 bits.

A 64-bit input block is permuted and then split into two 32-bit blocks
(L0, R0).

These blocks are then mangled in several rounds according to

(Li+1, Ri+1) = (Ri, Li ⊕ f(Ri, Ki))

Here Ki is a key derived from the original key K ∈ 256 and f : 232+48 → 232

is a carefully constructed Boolean map. Tempting, but we won’t go there.

The final output is then obtained from (L16, R16).

Eyeballing It 37

256 7.2 × 1016

2128 3.4 × 1038

2256 1.2 × 1077

Even with a million processors, the longer keys cannot be brute-forced.

Rijndael 38

AES Infrastructure 39

AES encrypts blocks of 128 bits, using a cipher key of 128 (or 192, 256 bits).
Bit-sequences in AES are always divided into bytes, 8-bit blocks.

Finite fields and/or polynomials are used in two places:

We can think of these bytes as coefficient vectors of elements in F28 where
the irreducible polynomial for the multiplicative structure is chosen to be

f(x) = x8 + x4 + x3 + x2 + 1

4-byte vectors are construed as polynomials in F28 [z]/(z4 + 1).

The Appointed Rounds 40

The algorithm first xors with a subkey, and then proceeds in 10 rounds
(actually, the number depends on the key size, but let’s just focus on 128-bit
keys). As in DES, each round mangles the bits some more (the final round is
slightly different, but we will ignore this).

Abstractly, a single round looks like so:

byte substitution

shifting rows

mixing columns

add key

Terminology 41

The row/column terminology comes from thinking of the initial input as being
given by a 4 × 4 matrix of bytes (for a total of 128 bits; in reality the input is
broken into corresponding pieces).

 a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

So the current state is described by such a matrix which we may think of as a
4 × 4 matrix over our favorite field F28 .

(1) Byte Substitution 42

Define the patched inverse of an element a ∈ B to be

a =
{

0 if a = 0,
a−1 otherwise.

Define an 8 × 8 bit-matrix and 8-bit vector as follows

A =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

v =

1
1
0
0
0
1
1
0

Then byte substitution is given by the (almost) affine, reversible map
a 7→ A a + v, applied to each byte separately.

Byte Substitution Picture 43

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

On the right, we simply use a rather than the patched inverse as on the left.

(2) Shift Rows 44

Replace the state matrix by the row-shifted version a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

More precisely, we shift the ith row by i places to the left (assuming
0-indexing).

The next operation is a bit more complicated.

Aside: Notation 45

For phase (3) we will use the same notation as in the Rijndael specification.

To denote an element of B, we think of a byte as two hexadecimal digits.

So, for example, D4 corresponds to the field element

z7 + z6 + z4 + z2 mod τ

in polynomial notation, or 11010100 as a coefficient vector.

Since the byte field B is quite small, we can easily use lookup tables to make all
the field operations very fast.

(3) Mixing Columns 46

Consider the polynomial (coefficients are written as two hex digits)

g(z) = 03 z3 + 01 z2 + 01 z + 02 ∈ B[z]

We can think of each column in the state matrix as another polynomial in B[z],
so in this phase we multiply the column polynomial by g, and then reduce
modulo z4 + 1.

Since these operations are all linear, this all comes down to a single matrix
multiplication over B:

c ;

 02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 c

(4) Add Key 47

Well . . .

The Standard 48

Take a look at the NIST specifications for cryptography and Rijndael:

ToolKit
Rijndael

There are lots of implementation details as well as a careful discussion how to
decrypt Rijndael encrypted message.

One pleasant aspect: the decryption operations are very similar to encryption,
so essentially the same hardware can be used.

http://csrc.nist.gov/CryptoToolkit/
https://csrc.nist.gov/glossary/term/rijndael

Keys and Decryption 49

Claim: All four phases are reversible.

At each round, a subkey is xor-ed with the state matrix; all the subkeys are 128
bits. We will not discuss how the subkeys are generated from the original key.
Incidentally, proper key management is a huge problem in cryptography.

The documents at the links also contain lots of implementation details as well
as a careful discussion how to decrypt Rijndael encrypted message. Note that
the inverse operations are very similar to the encryption operations, so
essentially the same hardware can be used.

Decryption Phases 50

The xor operation with the keys is self-inverse (we’re in characteristic 2), so
step 4 in each round is easily undone by anyone with access to the key.

States 1–3 are also invertible, none of the operations loses information.

As with DES, the decryption process is quite similar to encryption.

With appropriate CPU support the throughput is quite high (hundreds of
MB/s).

	Implementing Finite Fields
	Discrete Logarithms
	Advanced Encryption Standard

