
CDM
Fundamentals of Computation

Klaus Sutner
Carnegie Mellon University
Fall 2023





Where Are We? 2

We have an arguably correct notion of computation, based on any of a
number of equivalent models: register machines, Turing machines,
Herbrand-Gödel equations, µ-recursion, λ-definability.

We can use computability to explain formally what it means to solve a
problem. And we have a few examples of interesting problems that are
semidecidable but not decidable (beyond just Halting).

The next step is to take a closer look at basic properties of the clone of
computable functions.



Enumeration Theorem 3

Here is yet another way of expressing the fact that there are universal
machines.

Theorem
There exists a partial recursive function Φ : N × Nn ↛ N such that for
every partial recursive function f : Nn ↛ N there exists an index f̂ of f
such that f(x) ≃ Φ(f̂ , x) for all x.

Proof.
One needs to construct a universal device in the corresponding model of
computation. For example, for Turing machines the construction was
carried out in detail by Turing.

2



Kleene’s Notation 4

We write

{e}

for the eth function, e ≥ 0, defined by the enumeration theorem. One
should think of e as a program (in some suitable language).

Since these functions are partial in general we have to be a bit careful
and write

{e}(x) ≃ y

to indicate that {e} with input x returns output y after finitely many
steps.



More Convergence 5

To express convergence we also write

{e}(x) ↓

if {e} on input x terminates and produces some output, and

{e}(x) ↑

when the computation fails to terminate.

For example, Kleene equality {e}(x) ≃ {e′}(x) should be interpreted as:

either {e}(x) ↓ and {e′}(x) ↓ and the output is the same; or

{e}(x) ↑ and {e′}(x) ↑.



More Notation 6

Recall that a model of computation M consists of a space of
configurations with a one-step relation, plus input and output maps.

The one-step relation is always primitive recursive and different I/O
conventions make no difference wrto the computable functions defined by
the model.

One really should keep track of arities, so one should write something like

{e}(n)(x) ≃ y

or even {e}(n)
M (x) ≃ y. We won’t need this level of detail and we won’t

bother with it.



Robustness 7

The reason we can (usually) get away with ignoring which particular
universal machine we have chosen is the following: suppose we have two
different universal machines U and U ′.

Lemma
There is a primitive recursive function f such that

{e}U (x) ≃ {f(e)}U ′(x)

Proof.
By universality, U ′ can simulate U , and vice versa. It is straightforward to
check (a white lie) that the corresponding transformations are primitive
recursive.

2



Cross-Model Simulation 8

We can even deal with the situation where U is universal in one model of
computation and U ′ is universal in another model. Say, U is a universal
Turing machine and U ′ is a universal system of Herbrand-Gödel
equations.

Then there still is a primitive recursive function f such that

{e}U (x) ≃ {f(e)}U ′(x)

Exercise
Try to get an idea what f would look like for the translation from Turing
to Herbrand-Gödel.



Stages of a Computation 9

Recall the basic idea behind any model of computation: we have a space
C of configurations and a one-step relation C M

1
C ′.

But that means that every computation naturally unfolds in stages

C0, C1, C2, . . . , Cσ, . . . , Ct

where C0 is an initial configuration and Ct is a terminal configuration (at
least in the finite case).

Abstractly we can write

{e}σ(x) ≃ y

to indicate that {e} with input x returns output y after at most σ steps.



Stages are PR 10

Hence
{e}(x) ≃ y ⇐⇒ ∃ σ ({e}σ(x) ≃ y)

Lemma
The relation R(e, x, y, σ) ⇐⇒ {e}σ(x) ≃ y is primitive recursive.

Proof.
This is essentially the same argument as for Kleene’s T predicate:
C M

1
C ′ is primitive recursive, whence C M

σ
C ′ is primitive recursive,

uniformly in σ.
2



Dire Warning 11

But note that the bound σ cannot be computed: there is no total
recursive function f such that

{e}(x) ≃ y ⇐⇒ ∃ σ < f(e, x)
(
{e}σ(x) ≃ y

)

Otherwise we could solve the Halting Problem.

However, for practical algorithms (as in 15-451) this is not a problem, we
can always predict how long a computation will run. In fact, some
elementary bound will work.



Useful Convention 12

We may safely assume that {e}σ(x) always returns a value. To express
that the computation has not terminated yet we use the same trick as for
bounded search in primitive recursive functions and set

{e}σ(x) ≃ σ

By the same token, if the computation already converges in σ steps, all
parameters are less than σ:

{e}σ(x) ≃ y implies e, x, y < σ

Note that the function {e}σ is primitive recursive.



Limits 13

We will use the same notation for any computable function f . So

f(x) ≃ lim
σ→∞

fσ(x)

where the limit is taken in the discrete topology, and may well fail to
exist.

This also works the other way around: suppose f : N2 → N is primitive
recursive such that

f(x, σ) ≤ σ, and

f(x, σ) = y < σ implies ∀ t ≥ σ f(x, t) = y

Then f(x) :≃ lim f(x, σ) is computable (partial recursive).



Kleene’s S-m-n theorem 14

Once we have a fixed enumeration, one can compute with indices (think
manipulating programs).

Here is a particularly useful, though admittedly quite unspectacular
instance of such an index computation: we can fix some of the arguments
of a computable function to obtain another computable function.

Theorem
For every m, n ≥ 1 there is a primitive recursive function Sm

n such that

{Sm
n (e, p)}(n)(x) ≃ {e}(m+n)(p, x).

Proof.
Klar (pace Landau).

2



Currying 15

This is just the computability theory version of Currying: we can think of
a function f

f : A × B −→ C

as a functional

F : A −→ B −→ C

where F (a)(b) = f(a, b).

In Kleene’s version, the emphasis is on the fact that it is easy
computationally to get from one to the other.



Swapping Arguments 16

Note that we can also obtain functions like

λx, y.f(5, x, 42, y)

since we are always working in a clone.

This may seem a bit nit-picky, but in other frameworks we may have to
insist on the existence of transposition operations T n

i,j(x) that swap xi

and xj (and thus provide arbitrary permutations of arguments).



More Index Computation 17

We claim that there is a primitive recursive function f such that

{f(e, e′)} ≃ {e} ◦ {e′}.

Given two devices, we can effectively construct a new device that
represents the composition of the given ones.

Or we could use arithmetic to build more complicated functions:

{g(e, e′)} ≃ {e} + {e′}.

And so forth and so on.



Second Recursion Theorem 18

The next result is utterly amazing: it shows that we solve functional
equations of computable functions in mind-numbing generality.

Theorem (Kleene, Second Recursion Theorem, 1938)
Let F : Nn+1 ↛ N be a partial recursive function. Then there exists an
index e⋆ such that for all x ∈ N:

{e⋆}(x) ≃ F (e⋆, x).

Moreover, e⋆ can be computed effectively from an index for F .

Think of e⋆ as some program, x as input and F as an interpreter running
e⋆ on x: then the claim is obvious. However, the theorem holds for
arbitrary computable F !



No Way 19

At first glance, this sounds utterly wrong.
What if F (e, x) = {e}(x) + 1?
Then {e⋆}(x) ≃ {e⋆}(x) + 1.

We already know how to deal with this: any totally undefined function
{e⋆} works just fine.

In general it requires extra effort to show that a function obtained from
the theorem is, say, total. A priori, all we get is a computable function, no
more. And, this computable function may be undefined in many places.



Weird Consequences 20

The theorem has some rather strange consequences:

Let F (e, x) ≃ e. Then e⋆ ≃ {e⋆}(x).

Let F (e, x) ≃ {x}(e). Then {x}(e⋆) ≃ {e⋆}(x).

These F are clearly computable, so there is no way around these
conclusions–no matter how strange they look.



Quines 21

The first result, e⋆ ≃ {e⋆}(x), is the theoretical foundation for quines,
programs that print themselves.

The real challenge here is that one needs to deal with the idiosyncrasies
(more often: idiocies) of a particular programming language.

Exercise
Write a quine in your favorite programming language.



The Fixed Point Version 22

Here is yet another version of the recursion theorem that often comes in
handy.

Corollary (Rogers, 1967)
Let f : N → N be a recursive function. Then there exists an index e⋆

such that
{e⋆}(x) ≃ {f(e⋆)}(x).

Proof.
Define F (e, x) ≃ {f(e)}(x).

2



The Proof 23

We will prove the second version directly.
Define

h(e, x) ≃ F (S1
n(e, e), x)

Let ĥ be an index for h and set

e⋆ := S1
n(ĥ, ĥ)

Then

{e⋆}(x) ≃ {S1
n(ĥ, ĥ)}(x)

≃ {ĥ}(ĥ, x)

≃ h(ĥ, x)

≃ F (S1
n(ĥ, ĥ), x)

≃ F (e⋆, x)



Aside: Proofs 24

A proof has (at least) two purposes:

It establishes the correctness of the claim, beyond a shadow of a
doubt.

It explains why the claim is true.

Whether a proof satsifies these requirements can be a matter of opinion:
accepting a proof is a social process, not just a logical one.



Quoi? 25

The proof of the recursion theorem is one of the most infuriating proofs
known to mankind.

Every step is trivial equational reasoning, so arguably the proof is perfect
wrto the first requirement.

But the whole argument makes no sense, it explains absolutely nothing.

J. C. Owings called it “barbarically short” and “nearly incapable of
rational analysis.”



A Failed Diagonal Argument 26

Owings also suggested a way to make sense out of it: think of it as a
diagonal argument that fails.
In a diagonal argument we have an infinite matrix S over some set A:

S : N × N → A

We can think of the rows as infinite sequences over A, so S is a table of
infinite sequences.
We have some operation α on A such that the sequence obtained by
applying α to the diagonal

(
α(S(i, i))

)
i≥0 is not in S.



Suppose f is computable and well-behaved on indices: {e} ≃ {e′}
implies {f(e)} ≃ {f(e′)}; so f preserves semantics.

Define a matrix S of computable functions by

S =
(
{{i}(j)}

)
i,j

Define α({e}) = {f(e)}.

In this case, the diagonal sequence (S(i, i))i≥0 as well as its image under
α is still a row in S.

The intersection of this row and the diagonal is what we are looking for.



Informal RT 28

Here is a good intuitive way to think about RT. The typical definition of
a computable function Q looks like so:

Q: input x

some computation
return . . .

But with the RT we can use an index q for Q inside the definition:

Q: input x

some computation using q

return . . .



Roger’s Version 29

This corresponds perfectly to Roger’s version of the recursion theorem:
the stuff in the box

input x

some computation using q

return . . .

corresponds to the program transformation f : it modifies program q to
some program f(q).

But the modified program turns out to be the same as the original q.



Application: Halting 30

Assume for the sake of a contradiction that the halting set
K = { e | {e}(e) ↓ } is decidable.

Define Q by

input x
if charK(q) ≃ 1 // check q ∈ K
then ↑
else return 0

Then Q(q) ↓ implies Q(q) ↑, and Q(q) ↑ implies Q(q) ↓.

↑↓↓↑↑↓↓↑↑↓↓↑↑↓↑↓↓↑↑↑↑↑↑↓↑↓↓↑↑↓↓↑↑↓↑↓↓↓↑↑↑↓↑↓↑↓↓↑↑↓↓↑↑↓



Application: Ackermann 31

Define Q by

input x, y
if x = 0
then return y + 1
elseif y = 0

then return {q}(x − 1, 1)
else return {q}(x − 1, {q}(x, y − 1))

Then Q = {q} is none other than the Ackermann function and we have
another proof of its computability. Of course, one still has to work to
demonstrate totality.



Semi-Characteristic Function 32

The semi-characteristic function of a relation A ⊆ Nk is defined by

scharA(x) ≃

{
0 if x ∈ A,
↑ otherwise.

Thus, A is semidecidable iff scharA is a partial computable function. In
fact, A is the domain of definition of scharA.

Definition
We write We for the semidecidable set { x | {e}(x) ↓ }.

Thus (We)e is an enumeration of all semidecidable sets, at least if we
ignore arities.



Application: Rice’s Theorem 33

Let’s say that P ⊆ N is a non-trivial property of semidecidable sets if

We = We′ implies e ∈ P ⇐⇒ e′ ∈ P ,

e0 ∈ P and e1 /∈ P for some e0 and e1.

Examples are “We is empty,” “We is finite,” or “We is decidable.”

Theorem (Rice 1953)
Every non-trivial property of semidecidable sets is undecidable.



Proof 34

For the sake of a contradiction assume P is decidable.

Define Q by

input x
if charP (q) ≃ 1 // check q ∈ P
then return {e1}(x)
else return {e0}(x)

But then q ∈ P implies Q ≃ {e1} and thus q /∈ P .

On the other hand, q /∈ P implies Q ≃ {e0} and thus q ∈ P .



Application: Minimal Machines 35

All models of computation can be associated with a natural size function.
For example, we could define the size of a Turing machine M to be its
index M̂ or the number of bits needed to specify its transition function.

Call M minimal if no smaller machine is equivalent to M . Here
equivalent means that ∀ z (M(z) ≃ M ′(z)).

Claim
The set of minimal Turing machines is not semidecidable.

So this is a little stronger than just saying minimality is undecidable.



Proof 36

For the sake of a contradiction assume minimal machines are
semidecidable.

Define Q by

input x
enumerate minimal machines Me until e > q
return Me(x)

But then Q = {q} and Me are equivalent, yet q < e, contradicting
minimality.



And the First? 37

Where there is a second, there must be a first. Alas, the First Recursion
Theorem is a bit harder to explain, since it uses higher order functionals
rather than just functions.

Let us write P for all partial arithmetic functions (of fixed arity, we will
fudge a bit).
We can define a partial order ⊑ on P by setting f ⊑ g if

∀ x (f(x) ↓ implies f(x) ≃ g(x))

Thus f and g agree on the domain of definition of f (g extends f).

Note that this partial order is complete: given an ascending chain (fi) we
can form

⊔
fi.



Example 38

Let ⊥ = ∅ be the totally undefined function.

Given any partial function f define the functional F by

F (f) = f ∪ {(0, 1)} ∪ { (x, x · y) | (x − 1, y) ∈ f }

Then f =
⊔

F i(⊥) is the factorial function.

As it turns out, all computable functions can be constructed in this
manner: by a (easily computable) chain of finite approximations that get
closer and closer to the target.



Example 39

We can also model primitive recursion in this manner. Suppose
f = Prec[h, g]. Define the functional F by

F (f) = f ∪ { (0, y, g(y)) | y } ∪
{ (x, y, h(x − 1, z, y)) | (x − 1, y, z) ∈ f }

Then f =
⊔

F i(⊥).

Note that, as written, these approximations are not finite, F (⊥) already
contains all of g.

Make sure you understand how F could be adjusted so that all F i(⊥) are
finite. Try addition first.



Good Functionals 40

Definition
A functional F : P → P is effectively continuous if

monotonicity: f ⊑ g implies F (f) ⊑ F (g)

continuity: if (fi) is an ascending sequence in P, then F (
⊔

fi) =⊔
F (fi)

finite approximations: for some Ffin partial recursive F (Θ)(x) =
Ffin(Θ̂, x) where Θ is a finite function with index Θ̂.



Compactness 41

Lemma
Functional F is effectively continuous iff

F (f)(x) ≃ y ⇐⇒ ∃ Θ ⊑ f finite (F (Θ)(x) ≃ y)

In other words, we can already determine the value of F (f)(x) by using
a suitable finite approximation Θ ⊑ f : no infinite amount of information
is needed (say, the values of f on all even numbers).

This comports nicely with any intuitive notion of what it means to
effectively compute the functional F .



First Recursion Theorem 42

Theorem (Kleene, First Recursion Theorem, 1938)
Every effectively continuous functional F has a least fixed point f , a
partial recursive function. Moreover, an index for f can be computed
effectively from an index for F .

The construction of the “solution” f uses an increasing chain of
approximation: Let f0 = ⊥ and fi+1 = F (fi). Then

f =
⊔

fi =
⊔

F i(⊥)

Note that this is essentially call-by-value rather than call-by-name as in
the FRT.





Semidecidable Sets and Domains 44

The definition of a semidecidable set is based on a “semi-algorithm”.
Alternatively we can use the semi-characteristic function, but note that
any other computable function will do as well.

Proposition
A set is semidecidable if, and only if, it is the domain of a partial
computable function.

By domain we mean domain of convergence, aka support.

Only convergence matters, the output is irrelevant (unlike with decision
algorithms).



Recursively Enumerable Sets 45

There is another way to look at semidecidable sets: one can generate
them in a computable manner.

Definition
A ⊆ N recursively enumerable (r.e.) if there is a computable function
f : N ↛ N such that A is the range of f .

Except for A = ∅ we can choose f to be total. More useful is the
following:

Lemma
We may assume without loss of generality that the domain of f is N or
{0, 1, . . . , n − 1} for some n, and that f is injective.



Construction for Lemma 46

Given f , we construct a new function g with the right properties.
We proceed in stages σ ≥ 0. Set z = 0.

Stage σ:
Compute fσ(0), . . . , fσ(σ − 1).
If a new value y appears, set g(z) ≃ y and let z =
z + 1.

Then g is computable, injective, has the same range as f and its support
is an initial segment of N, as required.

2



Semidecidable is Recursively Enumerable 47

Lemma
A set A ⊆ N is semidecidable iff it is recursively enumerable.

Proof. Suppose A is semidecidable, say A = dom f for some
computable function f .
We construct a computable function g such that A = rng g in stages:

Stage σ:
Compute fσ(0), . . . , fσ(σ − 1).
If a new value x < σ such that f(x) ↓ appears, set
g(z) ≃ x and let z = z + 1.



Opposite Direction 48

Suppose A = rng g.
We construct a computable function f such that A = dom f in stages:

Stage σ:
Compute gσ(0), . . . , gσ(σ − 1).
If a new value g(x) ≃ y < σ appears, set f(y) ≃ 0.

2

Convince yourself that this construction can really be handled in a
computable manner: there is a primitive recursive function C(σ) that
computes all the pieces at stage σ.



Approximating Semidecidable Sets 49

We can approximate semidecidable sets much the way we can
approximate computable functions (in fact, it’s a bit easier).
Let f be the semi-characteristic function for some semidecidable set W .
Define

Wσ = { x | fσ(x) < σ }

Note that Wσ ⊆ W is a finite set (in fact, it has cardinality at most σ).
Also, Wσ is primitive recursive uniformly in σ.
Lastly, W =

⋃
Wσ.



Semi- versus Decidable 50

We can now give a very careful proof linking decidability and
semidecidability.

Lemma
A set A is decidable iff A and N − A are both semidecidable.

Proof. A decidable means its characteristic function is computable. But
then it is easy to see that the semi-characteristic functions of both A and
N − A are also computable.
For the opposite direction let A = We and N − A = We′ . Given x let

τ = min
(

σ | x ∈ We,σ ∪ We′,σ

)
f(x) =

{
0 if x ∈ We′,τ ,
1 if x ∈ We,τ .

Then f is the characteristic function of A and clearly is computable. 2



Closure 51

Lemma
The collection of semidecidable sets is closed under union and
intersection.

Proof.
For union let A = We and B = We′ . Define

fσ(x) ≃

{
0 if x ∈ We,σ ∪ We′,σ,
↑ otherwise.

Then f = lim fσ is computable and is none other than the
semi-characteristic function of A ∪ B. The argument of intersection is
similar. 2



In Other Words . . . 52

And again: this justifies definitions of the form

f(x) ≃

{
g(x) if x ∈ A,
↑ otherwise.

If g is computable and A is semidecidable, then f is also computable.

And again again: we cannot replace the ↑ in the second case by h(x)
unless A is decidable.



Not Even Semidecidable 53

It follows immediately that the complement K of the Halting set is not
semidecidable. Let’s call such sets co-semidecidable.

So we have to cope with at least three types of problems:

decidable

semidecidable

co-semidecidable



Computability and Recursive Enumerability 54

Lemma
A partial function f is computable if, and only if, its graph is recursively
enumerable. For total f the graph is decidable.

Proof. Write F ⊆ N2 for the graph of f .
Suppose f is computable. To semidecide (x, y) ∈ F , we try to compute
f(x). If the computation converges, we check that the output is y. i

For the opposite direction, given x, start enumerating F .
If a pair (x, y) appears, output y.

2



Projections 55

Definition
Suppose R ⊆ Nn+1. The projection S ⊆ Nn of R is defined by

S(x) :⇔ ∃ z R(z, x)

Note that S is semidecidable whenever R is decidable: we can search for
a witness z.

Lemma
Every semidecidable set is a projection of a decidable set.

This follows immediately from Kleene normal form.


