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Where Are We? 2

Magmas, semigroups, monoids and groups are the right framework to discuss a
single algebraic binary operation. From the first-order logic perspective, we are
dealing with structures of the form

A = ⟨A, ∗⟩

perhaps augmented by a constant (the identity element) and a unary function
(the inverse).

Alas, one operation is not enough for arithmetic, taking place in structures like
N, Z, R, C, Rn,n or R[x]. From experience, we need to study structures with
(at least) two operations:

a commutative addition operation, and
a possibly non-commutative multiplication operation.

And, of course, they have to coexist peacefully.



Rings and Field 3

Definition
A ring is an algebraic structure of the form

R = ⟨R, +, ·, 0, 1⟩

where
⟨R, +, 0⟩ is a commutative group (additive group),

⟨R, ·, 1⟩ is a monoid (not necessarily commutative),

multiplication distributes over addition:

x · (y + z) = x · y + x · z

(y + z) · x = y · x + z · x



Commutative and Unital Rings 4

Note that we need two distributive laws since multiplication is not assumed to
be commutative. If multiplication is also commutative, the ring itself is called
commutative.

Our rings are required to have a 1, a neutral element wrto multiplication.
These are also called unital rings. One can also allow non-unital rings: for
example, 2Z is a ring without 1. Instead of a multiplicative monoid one has a
semigroup†.

For our purposes there is no real need for this, we will always assume that we
have ring elements 0 ̸= 1. Note, though, that ideals typically fail to be subrings
in this setting.

†These structures are sometimes insanely called rngs.



Adjoining a 1 5

In some structures, adding a neutral element is very easy: we can turn an
arbitrary semigroup into a monoid by simply adding a new element 1 and
extending the operation accordingly.

For non-unital rings R this is a bit more complicated. We use the carrier set
R̂ = Z×R and define operations

(n, r) + (m, s) = (n + m, r + s)
(n, r) ∗ (m, s) = (nm, mr + ns + r ∗ s)

Then R̂ has (1, 0) as a multiplicative neutral element, and one can check that
r 7→ (0, r) is an injective ring homomorphism.



Examples: Rings 6

Example (Standard Rings)
The integers Z, the rationals Q, the reals R, the complex numbers C.

Example (Univariate Polynomials)
Given a ring R we can construct a new ring by considering all polynomials with
coefficients in R, written R[x] where x indicates the “unknown” or “variable”.
For example, Z[x] is the ring of all polynomials with integer coefficients.

Example (Matrix Rings)
Another important way to construct rings is to consider square matrices with
coefficients in a ground ring R.
For example, Rn,n denotes the ring of all n by n matrices with real coefficients.
Note that this ring is not commutative unless n = 1.



More Examples 7

Example (Function Rings)
Let A ̸= ∅ be some set and consider R = A→ S where S is some ring.
Operations are

(f + g)(a) = f(a) + g(a)
(f · g)(a) = f(a) · g(a)

Example (Endomorphism Rings)
Let G an Abelian group and R = End(G) the collection of endomorphisms of
G. Operations are

(f + g)(a) = f(a) + g(a)
(f · g)(a) = f(g(a))



A Strange Ring 8

All these important examples have a strong arithmetic flavor. However, the
axioms are much more general than that. Here is a warning that rings may look
fairly strange.

Let A be an arbitrary set and let P = P(A) be its powerset. For x, y ∈ P
define addition as symmetric difference and multiplication as intersection.

x + y = x⊕ y = (x− y) ∪ (y − x)

x ∗ y = x ∩ y

Proposition
⟨P(A), +, ∗, ∅, A⟩ is a commutative ring.

Exercise
Prove the proposition.



Annihilators, Inverses and Units 9

Definition
A ring element a is an annihilator if for all x: xa = ax = a.
An inverse u′ of a ring element u is any element such that uu′ = u′u = 1.
A ring element u is called a unit if it has an inverse u′.

Proposition
0 is the uniquely determined annihilator in any ring.

Proof. We have a0 = a(0 + 0) = a0 + a0; by cancellation in the additive
group, 0 is an annihilator. But 0 = a0 = a for any annihilator. 2



Inverses 10

Note that an annihilator cannot be a unit. For suppose aa′ = 1. But then
a = 1, contradiction.

The multiplicative 1 in a ring is uniquely determined: 1 = 1 · 1′ = 1′.

Proposition
If u is a unit, then its inverse is uniquely determined.

Proof.
Suppose uu′ = u′u = 1 and uu′′ = u′′u = 1. Then

u′ = u′1 = u′uu′′ = 1u′′ = u′′.

2

As usual, lots of equational reasoning. And we can write the inverse in the
usual functional manner as u−1.



Notation 11

R⋆ = R− {0}

R× = units of R

Clearly, R× ⊆ R⋆ but can be much smaller: For example, Z× = {±1}. On the
other hand, Q× = Q⋆.



Zero Divisors 12

We are interested in rings that have lots of units. One obstruction to having a
multiplicative inverse is described in the next definition.

Definition
A ring element a ̸= 0 is a left (right) zero divisor if there exists b ̸= 0 such that
ab = 0 (ba = 0). a is a zero divisor if it is a left or right zero divisor, and a
two-sided zero-divisor if it is both a left and right zero divisor.

All these left/right complications disappear if one works in a commutative ring.

Recall the old multiplicative map â : R→ R , x 7→ ax. Then â fails to be
injective iff a is a left zero divisor.



Integral Domains 13

Definition
A commutative ring is an integral domain if it has no zero-divisors.

Then ⟨R⋆, ·, 1⟩ is a monoid in any integral domain.

Proposition (Multiplicative Cancellation)
In an integral domain we have ab = ac where a ̸= 0 implies b = c.

Proof. ab = ac iff a(b− c) = 0, done. 2



Examples: Integral Domains 14

Example (Standard Integral Domains)
The integers Z, the rationals Q, the reals R, the complex numbers C are all
integral domains.

Example (Modular Numbers)
The ring of modular numbers Zm is an integral domain iff m is prime.

Example (Non-ID)
The ring of 2× 2 real matrices has zero divisors:

( 0 1
0 0 ) · ( 1 0

0 0 ) = ( 0 0
0 0 )



Fields 15

Definition
A field F is a ring in which the multiplicative monoid ⟨F ∗, ·, 1⟩ forms a
commutative group.

In other words, every non-zero element is already a unit. As a consequence, in
a field we can always solve linear equations

a · x + b = 0

provided that a ̸= 0: the solution is x0 = −a−1b. In fact, we can solve systems
of linear equations using the standard machinery from linear algebra.

As we will see, this additional condition makes fields much more constrained
than arbitrary rings. By the same token, they are also much more manageable.



Examples: Fields 16

Example
In calculus one always deals with the classical fields: the reals R and the
complex numbers C.

Example
The modular numbers Zm form a field for m is prime.
We can use the Extended Euclidean algorithm to compute multiplicative
inverses: obtain two cofactors x and y such that xa + ym = 1. Then x is the
multiplicative inverse of a modulo m.
Note that we can actually compute quite well in this type of finite field: the
elements are trivial to implement and there is a reasonably efficient way to
realize the field operations.



Axiomatization 17

Note that one can axiomatize monoids and groups in a purely equational
fashion, using a unary function symbol −1 to denote an inverse function when
necessary.

Alas, this does not work for unital rings and fields: we need an inequality
0 ̸= 1, and the inverse operation is partial and requirese a guard:

x ̸= 0 ⇒ x ∗ x−1 = 1

One can try to pretend that inverse is total and explore the corresponding
axiomatization; this yields a structure called a meadow which does not quite
have the right properties.



Products Fail 18

One standard method in algebra that produces more complicated structures
from simpler ones is to form a product (operations are performed
componentwise).

This works fine for structures with an equational axiomatization: semigroups,
monoids, groups, and rings†.

Unfortunately, for fields this approach fails. For let

F = F1 × F2

where F1 and F2 are two fields.

Then F is a commutative ring, but never a field: we have zero divisors (0, 1)
and (1, 0) in F .

†Strictly speaking, unital rings are not equational, we need one inequality 0 ̸= 1.



Division Rings 19

If we allow ⟨F ∗, ·, 1⟩ to be an arbitrary group (not necessarily commutative)
then we obtain a division ring, also known as a skew field.

Example
Hamilton’s quaternions form a division ring.

i2 = j2 = k2 = ijk = −1

Division rings are less important than fields, and are much harder to deal with.
We’ll ignore them.
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Fractions 21

The first field one typically encounters is the field of rationals Q.

Q can be built from the ring of integers by introducing fractions. In other
words, this is algebra by wishful thinking, we simply declare that

1
a

exists for each 0 ̸= a ∈ Z, basta. Needless to say, we want a · 1
a

= 1.

Of course, writing down pretty symbols is useless, we need to define arithmetic
operations on our new symbols (in a way that is consistent with the ring
operations).



Inventing Fractions 22

There is a fairly general and intuitive construction to obtain fractions, plus all
the requisite arithmetic.

Let R be an integral domain. Define an equivalence relation ≈ on R×R⋆ by

(r, s) ≈ (r′, s′) ⇐⇒ rs′ = r′s.

One usually writes the equivalence classes of R×R⋆ in fractional notation:

r

s
for (r, s) ∈ R×R⋆.

Note that one really needs to deal with equivalence classes; for example

12345
6789 = 4115

2263



Operations 23

Now define arithmetic operations

a

b
+ c

d
:= ad + bc

bd

a

b
· c

d
:= ac

bd

Lemma
⟨R×R⋆, +, ·, 0, 1⟩ is a field, the so-called field of fractions or quotient field of
R. Here 0 is short-hand for 0/1 and 1 for 1/1.

Exercise
Prove the lemma. Check that this is really the way the rationals are
constructed from the integers. Why is it important that the original ring is an
integral domain?



Computing in a Quotient Field 24

How hard is it to implement the arithmetic in the quotient structure?

Not terribly, we can just use the old ring operations. For example, using the
asymptotically best algorithm for integer multiplication we can multiply two
rationals in O(n log n) steps (but that’s not practical).

But there is a significant twist: since we are really dealing with equivalence
classes, there is the eternal problem of picking canonical representatives.
For example, in the field of rationals 12345/6789 is the same as 4115/2263
though the two representations are definitely different.
The second one is in lowest common terms and is preferred – but requires extra
computation: we need to compute and divide by the GCD.



The Truth 25

Rational arithmetic can be used to approximate real arithmetic, but for really
large applications it is actually not necessarily such a great choice:

Addition of rationals requires 3 integer multiplications, 1 addition plus one
normalization (GCD followed by division).

Multiplication of rationals requires 2 integer multiplications, plus one nor-
malization (GCD followed by division).

This is bad enough, in particular for addition, for people to start looking for
alternatives. For example, p-adic arithmetic can help. We won’t pursue this,
but note the flow of information here: computational requirements influence
the choice of algebraic structure.



Rational Function Fields 26

A particularly interesting case of the quotient construction starts with a
polynomial ring R[x]. Let us assume that R[x] is an integral domain. If we
apply the fraction construction to R[x] we obtain the so-called rational
function field R(x):

R(x) :=
{

p(x)
q(x)

∣∣∣∣ p, q ∈ R[x], q ̸= 0
}

Performing arithmetic operations in R(x) requires no more than standard
polynomial arithmetic.

Incidentally, fields used to be called rational domains, this construction is really
a classic. It will be very useful in a moment.



Fields and Numbers 27

We are ultimately interested in finite fields, but let’s start with the classical
number fields

Q ⊆ R ⊆ C

where everybody has pretty good intuition.

Q is effective: the objects are finite and all operations are easily com-
putable. Alas, upper bounds and limits typically fail to exist.

R fixes this problem, but at the cost of losing effectiveness: the carrier
set is uncountable, only generalized models of computation apply. Find-
ing reasonable models of actual computability for the reals is a wide open
problem.

C is quite similar, except that essentially all polynomials there have roots
(at the cost of losing order).



Notation Warning 28

We will deal with so-called towers of fields F ⊆ K (F is a subfield of K).

In this scenario one is often very casual about isomorphisms, it is fine to have a
field F′ isomorphic to F such that F′ ⊆ K. Pointing out the isomorphism gets
to be really tedious, so one simply ignores it.

For example, look up any formal definition of Q and R. You will find that Q is
isomorphic to some Q′ ⊆ R but, in terms of pure set theory, Q ∩ R = ∅.



A Challenge 29

Suppose we want to preserve computability as in Q, but we need to use other
reals such as

√
2 ∈ R. This is completely standard in geometry, and thus in

engineering.

Definition
A complex number α is algebraic if it is the root of a non-zero polynomial p(x)
with integer coefficients. α is transcendental otherwise.
Q is the collection of all algebraic numbers.

Theorem
Q ⊆ C forms an effective field.

Note that transcendental numbers may or may not be computable in some
sense; e.g., π and e certainly are computable in the right setting. BTW,
proving that a number is transcendental is often very difficult.



A Field? 30

Note that it is absolutely not clear that the sums and products of algebraic
numbers are again algebraic: all we have to define these numbers are rational
polynomials, and we cannot simply add and multiply these polynomials to
obtain a proof of algebraicity.

For example, the polynomial for
√

2 +
√

3 is

1− 10x2 + x4

The polynomial for 1 +
√

2
√

3 is

−5− 2x + x2



The polynomial 1− 10x2 + x4 has the following 4 real roots:
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√
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Aside: Messy Roots 32

This is where the polynomial comes from:

(−
√

2−
√

3 + x)(
√

2−
√

3 + x)(−
√

2 +
√

3 + x)(
√

2 +
√

3 + x)

simplifies to 1− 10x2 + x4.

Simplifying convoluted expressions involving roots is often a major nuisance.
Here is an example:

5−
√

3√
7− 4

√
3

= 7 + 3
√

3

Of course, nowadays one can use computer algebra.

Try by hand, once.



Aside: Effective Representations 33

We can represent the algebraic number
√

2 +
√

3 by specifying

the polynomial 1− 10x2 + x4, and
the rational interval [3, 16/5].

The interval separates
√

2 +
√

3 from the other roots.

This may sound trite, but the approach also works when the root cannot be
written out in terms of radicals, which can happen when the polynomial has
degree at least 5.

This also works more generally for the algebraic closure Q ⊆ C: we can specify
a small disk around a cmoplex point to separate roots.



Adjoining a Root 34

Here is a closer look. We want to use a root of the polynomial

f(x) = x2 − 2 ∈ Q[x]

commonly known as
√

2 ∈ R.

We need to somehow “adjoin” a new element α to Q so that we get a new field

Q(α)

in which

α behaves just like
√

2

the extended field is fully effective.

Ideally, all computations should easily reduce to Q.



Specs 35

We want a field F such that

Q ⊆ F

F contains a root of f

F is effective

And, as always, we want to do this in the cheapest possible way (algebraically,
the field should be simple, and the algorithms for the field operations should be
straightforward and fast).



Easy 36

In this case, there is a trick: we already know the reals R and we know that f
has a root in R, usually written

√
2.

Q(
√

2) = least subfield of R containing Q,
√

2

In the standard impredicative definition this looks like

Q(
√

2) =
⋂
{K ⊆ R | Q,

√
2 ⊆ K subfield of R }

Terminology: We adjoin
√

2 to Q.



Quoi? 37

So what is the structure of Q(
√

2)?

How do we actually compute in this field?

First note that since a subfield is closed under addition and multiplication we
must have p(

√
2) ∈ Q(

√
2) for any polynomial p ∈ Q[x].

Simple Observation:
√

22 = 2, so any polynomial expression p(
√

2) actually
simplifies to a + b

√
2 where a, b ∈ Q.



Adjoining Root of 2 38

We claim that

P = { a + b
√

2 | a, b ∈ Q } ⊆ Q(
√

2) ⊆ R

Clearly, P is closed under addition, subtraction and multiplication, so we
definitely have a commutative ring.

But can we divide in P ? We need coefficients c and d such that

(a + b
√

2)(c + d
√

2) = 1

provided that a ̸= 0 or b ̸= 0. Since
√

2 is irrational this means

ac + 2bd = 1

ad + bc = 0



Field Operations 39

Solving the linear system for c and d we get

c = a

a2 − 2b2 d = −b

a2 − 2b2

Note that the denominators are not 0 since a ̸= 0 or b ̸= 0 and
√

2 is irrational.

Hence P is actually a field and indeed P = Q(
√

2). The surprise is that we
obtain a field just from polynomials, not rational functions.

Moreover, we can implement the field operations in Q(
√

2) rather easily based
on the field operations of Q: we just need a few multiplications and divisions of
rationals.



Again: Killing Denominators 40

Division of field elements comes down to plain polynomial arithmetic over the
rationals. There is no need for rational functions.

a + b
√

2
r + s

√
2

= 1
r2 − 2s2 (a + b

√
2)(r − s

√
2)



Primitive Elements 41

Let F ⊆ K be a tower of fields and α ∈ K.

Definition
K is a simple extension of F if K = F(α).
In this case, α is called a primitive element for this extension.

For example, the imaginary unit i is a primitive element for the extension
R ⊆ C = R(i).

Particularly interesting is the case when α is algebraic over F, so that α is the
root of some f(x) ∈ F[x].



Adjoining Roots in General 42

Theorem
The least field containing F and a root α of f(x) ∈ F[x] is

F(α) = { g(α) | g ∈ F[x] } = F[α],

the field of fractions of F[α].

Proof.
F[α] is an integral domain, so we can form the field of fractions K, and any
field containing F[α] must contain K. By minimality, F(α) = K.

2

Again: What’s surprising here is that polynomials are enough. If we let g range
over all rational functions with coefficients in F the result would be trivial – and
much less useful.
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Is that It? 44

So far, we have a few infinite fields from arithmetic and calculus, Q, R, C, and
variants such as Q(

√
2) or Q, plus and a family of finite fields from number

theory: Zm for m prime.

Question:

Is that already it, or are there other fields?

In particular, are there other finite fields?

We will avoid infinite fields beyond this point.

It turns out to be rather surprisingly difficult to come up with more examples of
finite fields: none of the obvious construction methods seem to apply here.



Finite Integral Domains 45

Of course, every field is an integral domain. In the finite case, the opposite
implication also holds.

Lemma
Every finite integral domain is already a field.

Proof. Let a ̸= 0 ∈ R and consider our old friend, the multiplicative map
â : R⋆ → R⋆ , â(x) = ax.
By multiplicative cancellation, â is injective and hence surjective on R⋆. But
then every non-zero element is a unit: ab = â(b) = 1 for some b. 2



Comment 46

A famous theorem by Wedderburn that extends this result to division rings.

Theorem (Wedderburn 1905)
Every finite division ring is already a field.

In other words, commutativity comes for free in the finite case. Alas, the proof
is much harder, we won’t go there. The point is that, in the finite case, the
minimal conditions already suffice to produce a field.



Finite Fields 47

The AMS has an entry for finite fields in its classification:

AMS Subject Classification: 11Txx,
together with Number Theory.

So we can safely assume that there must be quite a few finite fields. Alas, it
takes a bit of work to construct them.

One way to explain these finite fields is to go back to the roots (no pun
intended) of field theory: solving polynomial equations.



Classification 48

Instead of trying to construct finite fields right away, let’s do a bit of reverse
engineering first.

Question: Is there any kind of neat classification scheme for
(finite) fields, a way to organize them into a nice taxonomy?

The analogous question for infinite fields this is rather difficult, but for finite
fields we can carry out a complete classification relatively easily. First, define
for any n ∈ N

1n =
n∑

i=1

1 = 1 + . . . + 1︸ ︷︷ ︸
n

There are two possibilities: all the 1n are distinct, in which case we are dealing
with an infinite field. Otherwise, there must be a repetition, say, 1n = 1n+k for
some k > 0. But then 1k = 0.



Characteristic 49

This naturally leads to the following definition:

Definition
The characteristic of a ring R is defined 2y

χ(R) =
{

min
(

k > 0 | 1k = 0
)

if k exist1,
0 otherwise.

In calculus, characteristic 0 is the standard case: Q ⊆ R ⊆ C all have
characteristic 0.

But in algebra and computer science rings of positive characteristic are very
important.



Prime Subfield 50

Lemma
The least subfield of any field F, the so-called prime subfield, has the form

P = {±1n/1m | n ≥ 0, m > 0, 1m ̸= 0 }

Proof.
Obviously, every subfield must contain all the 1n, and thus all of P .
On the other hand, it is easy to check that P already forms a field, and our
claim follows.

2

For characteristic 0 the produces the rational numbers, P = Q.



Positive Characteristic 51

For positive characteristic p, we don’t need denominators: the prime subfield
can be simplified to

P = {1k | 0 ≤ k < p }

To see why, note that the characteristic p must be a prime, otherwise we would
have zero-divisors. So P is isomorphic to Zp

†, the ordinary modular numbers.

It is well-known that all elements other than 0 have multiplicative inverses in
this structure. Moreover, we can compute the inverse using the (extended)
Euclidean algorithm.

†Strictly speacking, this should be written Z/pZ or Z/(p), but c’mon.



Digression: WTF? 52

The connection between fields and prime numbers is rather surprising: for us, a
field is just any model of the field axioms, and those axioms have nothing to do
with elementary arithmetic (which is handled by the Dedekind-Peano axioms).

And yet, primality, a core concept of arithmetic, pops up naturally in the study
of fields, and in particular finite fields.

The Message: Axioms are usually much more complicated than you think.
There may be hidden layers that are perfectly invisible without some serious
exploration.



Structure Theorem 53

Here is the surprising theorem that pins down finite fields completely (this
compares quite favorably to, say, the class of finite groups).

Theorem
Every finite field F has cardinality pk where p is the prime characteristic of F,
and k ≥ 1.
Moreover, for every p prime and k ≥ 1, there is a finite field of cardinality pk.
Lastly, all fields of cardinality pk are isomorphic.

From the computational angle it turns out that we can perform the field
operations quite effectively (at least for reasonable p and k), in particular in
some cases that are important for applications.



Proof Strategy 54

The proof comes in two parts:

For each p and k, construct a finite field of size pk.

Show that two fields of size pk must already be isomorphic.

Both require a bit of work.

For the existence part, we already are good for k = 1 and we already know that
every finite field contains a subfield of the form Zp where p is prime, the
characteristic of the field. So the real problem is to determine the rest of the
structure.

Here is the key idea.



Vector Spaces 55

Definition
A vector space over a field F is a two-sorted structure ⟨V, +, ·, 0⟩ where

⟨V, +, 0⟩ is an Abelian group,

The scalar multiplication · : F× V → V is subject to
a · (x + y) = a · x + a · y,

(a + b) · x = a · x + b · x,

(ab) · x = a · (b · x),

1 · x = x.

In this context, the elements of V are vectors, the elements of F are scalars.

Note that the last two axioms mean that the multiplicative group of F acts on
V on the left. In addition, 0 · x = 0, but that wrecks the invertibility condition.



The Mother of All Vector Spaces 56

Let F be any field, finite or infinite.

Consider Fn, the collection of all lists over F of length n.
In this context, these lists are called n-dimensional vectors.
Fn is a vector space over F using componentwise operations:

u + v = (ui + vi)
a · v = (avi)

Note that this is all easy to compute, given the field operations.



More Examples of Vector Spaces 57

Example
Let K ⊆ F be a subfield of F. Then F is a vector space over K via scalar
multiplication a · x = ax.

Example∐
I
F and

∏
I
F are vector spaces over F, for arbitrary index sets I (including

infinite ones).

Example
The set of functions X → F using pointwise addition and multiplication is a
vector space over F. Here X ̸= ∅ is any set.



Independence 58

A linear combination in a vector space is a finite sum

a1 · v1 + a2 · v2 + . . . + an · vn

where the ai are scalars and the vi vectors, n ≥ 1. The linear combination is
trivial if ai = 0 for all i.

Definition
A set X ⊆ V of vectors is linearly independent if every linear combination∑

aivi = 0, vi ∈ X, is already trivial.

In other words, we cannot express any vector in X as a linear combination of
others. In some sense, X is not redundant.



Spanning Sets 59

Definition
Let X ⊆ V . The span ⟨X⟩ of X is the collection of all vectors in V that are
linear combinations of vectors in X. X is spanning if its span is all of V .

Clearly, spanning sets always exist: V itself is trivially spanning. In the standard
Euclidean space Rn, the collection of unit vectors ei, i = 1, . . . , n , is spanning.

Proposition
Every span ⟨X⟩ is a subspace of V .



Bases 60

Definition
A set X ⊆ V of vectors is a basis (for V ) if it is independent and spanning.

Note that independent/spanning sets trivially exist if we don’t mind them being
small/large, respectively. The problem is to combine both properties.

Theorem
Every vector space has a basis.
Moreover, all bases have the same cardinality.

Correspondingly, one speaks of the dimension of the vector space.



Digression: Proof 61

For vector spaces of the form V =
∐

I
F this is fairly easy to see: let ei ∈ V be

the ith unit vector: ei(j) = 1 if i = j, ei(j) = 0, otherwise.
Then B = { ei | i ∈ I } is a basis for V .

But how about
∏

N F? The set B from above is still independent, but no
longer spanning: we miss e.g. the vector (1, 1, 1, 1, . . .). We could try to add
this vector to B, but then we would still miss (1, 0, 1, 0, 1, . . .). Add that vector
and miss another. And so on and so on.

This sounds pretty hopeless; how are we supposed to pick the next missing
vector? And will the process ever end?
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As it turns out, one needs a fairly powerful principle from axiomatic set theory:
the Axiom of Choice.

Write P+(A) for P(A)− {∅}, the set of all non-empty subsets of A. (AC)
guarantees that for any set A there is a choice function C

C : P+(A)→ A

such that C(X) ∈ X ⊆ A.

For example, for A = N, we could simply let C(X) = min X.
For A = R is utterly unclear what to do, so an axiom that guarantees the
existence of a choice function is very useful.
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With (AC), we can build a basis in any vector space by transfinite induction:
repeatedly choose a vector that is not a linear combination of the vectors
already collected.

B0 = ∅
Bα+1 = C (V − ⟨Bα⟩)

Bλ =
⋃

α<λ

Bα

Here it is understood that the construction ends whenever V − ⟨Bα⟩ = ∅.
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An easy (if transfinite) induction shows that all the Bα are independent.

For cardinality reasons, the process must stop at some point. But then the
corresponding Bα must be spanning and we have a basis.

With more work one can show that this process always produces a basis of the
same cardinality, no matter which choice function we use.

A Surprise: One can also show that the existence of a basis in any vector
space already implies the axiom of choice (over ZF).

So linear algebra without (AC) is pretty weird.
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The Axiom of Choice is obviously true,
the Well-Ordering Principle obviously false,
and who can tell about Zorn’s Lemma?

Jerry Bona
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The importance of bases comes from the fact that they make it possible to
focus on the underlying field and, in a sense, avoid arbitrary vectors.
To see why, suppose V has finite dimension and let B = {b1, b2, . . . , bd} be a
basis for V .

Then there is a natural vector space isomorphism

V ←→ Fd

that associates every linear combination
∑

cibi with the coefficient vector
(c1, . . . , cd) ∈ Fd. Since B is a basis this really produces an isomorphism.

So, we only need to deal with d-tuples of field elements. For characteristic 2
this means: bit-vectors.
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Back to finite fields. Given the prime subfield Zp
∼= K ⊆ F we have just seen

that we can think of F as a finite dimensional vector space over K. Hence we
can identify the field elements with fixed-length vectors of elements in the
prime field.

F ∼= Zk
p = Zp × Zp × . . .× Zp.

Addition on these vectors (the addition in F) comes down addition in Zp and
thus to modular arithmetic: vector addition is pointwise.
So addition is trivial in a sense. Alas, multiplication is a bit harder to explain.

At any rate, it follows from linear algebra that the cardinality of F must be pk

for some k.
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Lemma
The multiplicative subgroup F× of any finite field F is cyclic.

To see this, recall that the order of a group element was defined as

ord(a) = min
(

e > 0 | ae = 1
)
.

For finite groups, e always exists.
A group ⟨G, ·, 1⟩ is cyclic if it has a generator: for some element a, we have
G = { ai | i ∈ Z }. In the finite case this means G = { ai | 0 ≤ i < α } where α
is the order of a.

Proposition (Lagrange)
For finite G and every element a ∈ G: the order of a divides the order of G.
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Let m be the maximum order in F×, n the size of F×, so m ≤ n.
We need to show that m = n.

Case 1: Assume that every element of F× has order dividing m.

Then the polynomial zm − 1 ∈ F[z] has n roots in F: letting ℓ be the order of
some element a in F× and m = kℓ we have

zm − 1 = zkℓ − 1 = (zℓ(k−1) + zℓ(k−2) + . . . + zℓ + 1)(zℓ − 1)

and it follows that a is a root.

But then n ≤ m since a degree m polynomial can have at most m roots in a
field. Hence m = n.
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Case 2: Otherwise.

Then we can pick a ∈ F× of order m and b ∈ F× of order ℓ not dividing m.
Then by basic arithmetic there is a prime q such that

m = qsm0 ℓ = qrℓ0 s < r

where q is coprime to ℓ0 and m0.
Set

a′ = aqs

b′ = bℓ0

Then a′ has order m0, and b′ has order qr.

But then a′b′ has order qrm0 > qsm0 = m, contradiction. 2
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Given the fact that F× is cyclic, there is an easy way to generate the field (let’s
ignore 0).

Find a generator g of F×, and

compute all powers of g.

Of course, this assumes that we can get our hands on a generator g. Note that
multiplication is trivialized in the sense that gi ∗ gj = gi+j mod |F×|.

Hence it is most interesting to be able to rewrite the field elements as powers
of g. This is known as the discrete logarithm problem and quite difficult (but
useful for cryptography).
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As far as a real implementation is concerned, we are a bit stuck at this point:
we can represent a finite field as a vector space which makes addition easy. Or
we can use powers of a generator to get easy multiplication:

addition F ∼= (Zp)k (a1, . . . , ak)

multiplication F× ∼= Zpk−1 gi

So either case comes down to plain modular arithmetic. Nice, but in typical
applications we need to be able to freely mix both operations. Alas, everything
breaks when we try to mix and match: who knows what

gi + gj or (a1, . . . , ak) ∗ (b1, . . . , bk)

should be.

This is analogous to the problem of representing both addition and
multiplication in arithmetic as rational relations.
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A little color: pictures of the addition and multiplication tables for F25.

One can see the prime subfield in the top left corner.


	Rings and Fields
	Classical Fields
	Finite Fields

