
CDM
Iteration III

Klaus Sutner

Carnegie Mellon University

1 The Mandelbrot Set

2 Calculus and Fixed Points

3 Iteration and Decidability

4 Theory of Fixed Points

Self-Similarity 2

Recall that the driving idea behind recursion and iteration is self-similarity: the
whole computation is highly similar to a part of itself.

The notion of self-similarity is perhaps most compelling in geometry, there one
can see how parts of a figure are similar to the whole.

Note that without computer-aided visualization none of the following pictures
would exist, they cannot be drawn by hand.

Mandelbrot 1 3

Mandelbrot 2 4

Mandelbrot 3 5

Mandelbrot 4 6

What Set? 7

Consider the second-degree complex polynomial

pc(z) = z2 + c

where c ∈ C is a constant.

Definition
c ∈ C belongs to the Mandelbrot set M if the orbit of 0 under pc is bounded
(as a sequence of complex numbers).

For example, 0 ∈ M but 1 /∈ M .
c = i is also in: i, −1 + i, −i, −1 + i, −i, −1 + i, −i, −1 + i, . . .

Likewise −1 and −i are in.

And the Colors? 8

A priori, we only get a black and white picture: in M or out of M .

Note that it is not even clear how to do this much: there is no simple test to
check if |pn

c (0)| → ∞ as n → ∞.

In practice, one computes a few values |pn
c (0)| and checks whether they seem

to tend to infinity.

Colors can be introduced for example based on the speed of divergence.

Doing this right is somewhat of a black art, see
http://en.wikipedia.org/wiki/Mandelbrot set for some background.

http://en.wikipedia.org/wiki/Mandelbrot_set

Squaring 9

wHzL � z wHzL � z2

Squaring plus Offset 10

The symbolic orbit of 0 under z 7→ z2 + c.

0 0
1 c

2 c2 + c

3 c4 + 2c3 + c2 + c

4 c8 + 4c7 + 6c6 + 6c5 + 5c4 + 2c3 + c2 + c

5 c16 + 8c15 + 28c14 + 60c13 + 94c12 + 116c11+
114c10 + 94c9 + 69c8 + 44c7 + 26c6 + 14c5 + 5c4 + 2c3 + c2 + c

Note that the coefficients are rather wild, there is little hope to understand
these polynomials.

Why Now? 11

Several mathematicians developed the foundations for structures such as the
Mandelbrot set in the early 20th century, in particular Gaston Julia and Pierre
Fatou. Fractal dimensions were also well understood, see the work by Felix
Hausdorff and Abram Besicovitch.

Why did they not discover the Mandelbrot set?

Because they had no computers, unlike Monsieur Mandelbrot who happened to
be working for IBM at Yorktown Heights.
So one of the most important developments in geometry in the 20th century
was quite strongly connected to computation and visualization.

1 The Mandelbrot Set

2 Calculus and Fixed Points

3 Iteration and Decidability

4 Theory of Fixed Points

Calculus and Fixed Points 13

Many interesting applications of fixed points lie in the continuous domain:
finding a fixed point is often a good method in calculus to compute certain
numbers.

A classical problem: calculate
√

2, for some value of 2.

By “calculate” we mean: give a method that produces as many digits in the
decimal expansion of

√
2 as desired.

One obvious way to do this is a version of binary search: given an
approximation a, b such that a2 < 2 < b2 try (a + b)/2.
Fine, but a bit complicated.

Iteration to the Rescue 14

Consider the map

g : R+ → R+

g(x) = x/2 + 1/x

Then the iterates gn(1) approximate
√

2.

Note that
√

2 is in fact a fixed point of g. Alas, there is a problem: it is plain
false to claim that

FP(g, 1) =
√

2

All the numbers in the orbit are rational, but our goal is an irrational number,
which therefore cannot be a fixed point.

The Power of Wishful Thinking 15

But wouldn’t it be nice if we could set

a = gω(1)

so that

g(a) = g(gω(1)) = gω(1) = a

In a way, we can: we can make sense out of gω(1) by using limits: with luck
there will be some number a such that

|gn(1) − a| → 0 n → ∞.

Of course, this does not always work.

Success 16

In our case we duly have

lim
n→∞

gn(1) =
√

2.

and
√

2 is indeed a fixed point of g, the orbit just never reaches this particular
point.
This is no problem in real life: we can stop the iteration when |2 − (gn(1))2| is
sufficiently small.

As a matter of fact, convergence is quite rapid:

0 1.0000000000000000000
1 1.5000000000000000000
2 1.4166666666666665186
3 1.4142156862745096646
4 1.4142135623746898698
5 1.4142135623730949234
6 1.4142135623730949234

Newton’s Method 17

This is Newton’s Method: to find a root of f(x) = 0, iterate

g(x) = x − f(x)
f ′(x) ,

and pray that everything works.

Obviously f needs to be differentiable here, and we would like f ′(x) to be
sufficiently far away from 0 so that the second term does not become
unreasonably large.

Application: Reciprocal 18

A typical application of Newton’s Method is to determine 1/a in high precision
computations.

Here

f(x) = 1/x − a

g(x) = 2x − ax2

The point here is that we can express division in terms of multiplication and
subtraction (simpler operations in a sense).

Example 19

Numerical values for a = 1.4142135623730950488 ≈
√

2.

0 1.0000000000000000000
1 0.5857864376269049511
2 0.6862915010152396095
3 0.7064940365486259451
4 0.7071062502115925513
5 0.7071067811861488089
6 0.7071067811865475244
7 0.7071067811865475244

Verify the result:

0.7071067811865475244 × 1.4142135623730950488 = 1.000000000000000000

Schröder’s Method (1870) 20

If quadratic convergence is not enough one can speed things up tremendously
by iterating more complicated functions. For example, define fa(x) to be the
rational function

x −
(
x2 − a

) (
3x2 + a

) (
3x6 + 27x4a + 33x2a2 + a3)

2x (5x4 + 10x2a + a2) (x4 + 10x2a + 5a2)

Then fa can be used to approximate square roots very rapidly.

f2
2 (1) = 94741125149636933417873079920900017937

66992092050551637663438906713182313772

The error here is 2.2281 × 10−76, after just 2 steps!

No Free Lunch 21

Of course, there is a cost: function evaluation becomes more complicated.
Specifically, more costly multiplications and divisions are needed than in the
plain Newton case. The hope is that this will be more than offset by the
smaller number of iterations.

Since the Gerlach function fa(x) would presumably be evaluated numerous
times as part of some library this is a good place to optimize by precomputing
x2, x4 and so on.

There is also the minor problem of figuring out what these complicated
functions should be in the first place.

Exercise
Determine the optimal evaluation strategy for fa(x).

The Real World 22

Needless to say, complicated numerical methods should not be implemented by
hand, they belong into a well-thought-out and well-tested library.

For example, the Boost C++ library supports a number of fast root finding
methods.

#include <boost/math/tools/roots.hpp>

template <class F, class T>
T schroeder_iterate(F f, T guess, T min, T max, int digits);

Exercise
Try out the various root finding methods in Boost.

Brute Force 23

As we have seen, with luck, a fixed point for a continuous function f : R → R
can be found by plain iteration, at least in the sense that we can produce a
numerical approximation (perhaps even rapidly).

We compute an = fn(a) and exploit the fact that if there is a limit a = lim an

then a is a fixed point of f .
Moreover, an may be very close to a for reasonably small values of n so we can
actually get our computational hands on a good approximation.

Alas, iteration does not always produce fixed points, even when they are easy
to detect visually.
Here are some examples.

A Nice Fixed Point 24

cos x = x

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

The Logistic Map 25

Cosine is a transcendental function, and thus relatively complicated. Alas, as
the Mandelbrot set suggests, even with second order polynomials strange things
can happen under iteration. Here is a real example:

fp(x) = p · x · (1 − x)

where 0 ≤ p ≤ 4. Note that for these parameter values we have

fp : [0, 1] → [0, 1]

so we can actually iterate the map.

This is the so-called logistic map, a famous example in dynamics.

Its behavior depends drastically and very unexpectedly on the parameter p.

p = 2.8 26

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p = 3 27

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p = 3.5 28

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p = 3.99 29

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Tent Maps 30

Differentiability is not necessary at all, piecewise linear will do.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Tent Map Squared 31

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

A 2-Cycle 32

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

A Mess 33

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Sharkovskii’s Theorem 34

Here is a remarkable theorem describing chaos in real valued functions.
Consider the following weird ordering of the natural numbers, the so-called
Sarkovskii ordering (of order type ω2 + ωop):

3, 5, 7, 9, . . . , 2 · 3, 2 · 5, . . . , 4 · 3, 4 · 5, . . . , 23, 22, 21, 20.

Theorem (Sharkovskii 1964)
For any continuous function f : R → R : if f has a cycle of length α then f
has a cycle of length β for all α < β in the Sharkovskii ordering.

Hence, if there is a 3-cycle, then there are cycles of any length.

1 The Mandelbrot Set

2 Calculus and Fixed Points

3 Iteration and Decidability

4 Theory of Fixed Points

Reachability and Confluence 36

How about decidability issues related to iteration?
We have already seen two decision problems

Problem: Reachability Problem
Instance: A function f : A → A , two points a, b ∈ A.
Question: Is b in the orbit of a under f?

Problem: Confluence Problem
Instance: A function f : A → A , two points a, b ∈ A.
Question: Do the orbits of a and b under f overlap?

Actually, there are two versions: f may be fixed and only a and b change, or f
may be part of the input.

Undecidability 37

When the carrier set A is finite the questions are trivially decidable and we even
have clever algorithms to solve these problems based on Floyd’s trick.

In the infinite case the most interesting situation is when f is computable
and when A = N or A = Σ⋆.

Note that both problems are always semi-decidable in this case.

However, in general both Reachability and Confluence are undecidable,
even for fixed f .

As Always, Halting 38

The reason is that we can let f describe the one-step relation for register
machines, coded up as on operation on suitable sequence numbers.

Then f is primitive recursive and in fact pretty simple. Note that we can safely
assume that the RM erases all its registers before it halts, so it will halt iff it
reaches the configuration ⟨qH , 0⟩ .

But then the question whether an given initial configuration ⟨q0, x0⟩ evolves to
⟨qH , 0⟩ is undecidable.

Independence 39

Reachability and Confluence are clearly related:

reach(x, y) → conf(x, y)
conf(x, y) ↔ ∃ z (reach(x, z) ∧ reach(y, z))

One might suspect that using one as an oracle one could solve the other, but it
turns out that there is no simple computational link in general: there are cases
where Reachability is undecidable but Confluence is decidable, and the other
way round.

In fact, with some effort one can rig things up so that Reachability and
Confluence are independent in their degree of difficulty within the class of
semidecidable sets (alas, to make this precise requires a discussion of Turing
degrees, see the notes).

Word Processing 40

If we use the standard coding of configurations of a Turing machine as words in

Σ⋆ Q Σ⋆

then the one-step operation is very simple, it’s really just word processing: we
scan the word, copying until we hit p ∈ Q, then perform a small edit operation
near p, and afterwards copy the rest of the word.

It is easy to see that this operation can be implemented in linear time and
constant space.

Exercise
Give a careful description of the one-step operation as a string editing
operation.

Why Belabor This? 41

In essence, we are just dealing with the Halting Problem, for the umpteenth
time.
But note that undecidability often is reflected in various easier versions of the
problem still being difficult.
For example, consider a directed graph G on n points. There is a natural
Reachability Problem for G: is there a path from a to b?
Of course, the problem is easily solvable: we can use, say, depth-first-search to
check path existence in linear time.
But all standard algorithms require linear space, not just linear time.
Logarithmic space suffices when we allow nondeterminism (more later) but in
the deterministic case it seems to be too little.

Back To Collatz 42

The Collatz Conjecture is very easy to state:

Conjecture (Collatz)
All orbits of the Collatz function end in 1.

Unfortunately, though this problem is not included in the Clay challenge, some
believe it to be enormously difficult.

Mathematics is not ready for this kind of
problem.

Paul Erdös

Coming from one of the shining lights of 20th century discrete mathematics
(Erdös number) this is discouraging.

Can We Use Computability? 43

Here is a desperate idea: Perhaps we could use our knowledge of computation
to shed some light on this problem?

After all, the Collatz function is easily computable and we could build a small
register machine that computes C(x), or the stopping time function σ(x).

Maybe we can use decidability or undecidability to tackle the problem?

Stopping Time is Computable 44

Recall the stopping time function σ : N ↛ N :

σ(x) =
{

min
(

t | Ct(x) = 1
)

if t exists,
↑ otherwise.

This version of σ is computable: just wrap a while-loop around the register
machine computing C and add a counter. But note: the original version had
∞ as output in case of divergence; that one may not be computable).

Then the Collatz Conjecture is equivalent to σ being a total function.

Alas, it is undecidable whether a computable function is total; in fact this
problem is worse than the Halting Problem, we would need access to ∅′′.

Collatz Decision Problem 45

So how do we turn Collatz into a decision problem?
Here is one fairly natural approach, really a version of Reachability.

Problem: Collatz Orbit Problem
Instance: A positive natural number x.
Question: Does the orbit of x under C contain 1?

Observations:

This problem is clearly semi-decidable.
If the Collatz Conjecture is true, this problem is trivially decidable.
Unfortunately, if this problem is decidable, the Collatz Conjecture may still
be wrong (though the counterexamples are not terribly complicated: the
set of all counterexamples is decidable).

Not too promising.

Prof. Dr. Alois Wurzelbrunft’s Brilliant Idea 46

One might think that the right question to ask is this:

Problem: Wurzelbrunft’s Collatz Problem
Instance: The Collatz function

(or, if you prefer: a banana).
Question: Is the Collatz Conjecture true?

Wurzelbrunft’s Collatz problem is trivially decidable, albeit for entirely the
wrong reasons.

The issue here is that there is only one instance.

Say What? 47

For decidability, all we need is an algorithm that solves Fred’s Collatz Problem.

No problem, here are two candidates:

Algorithm 1: Ignore the input and output Yes.

Algorithm 2: Ignore the input and output No.

One of those two algorithms solves this decision problem, we just don’t know
which.

Note that no one said that we need to be able to point out the algorithm
explicitly, we just have to make sure an algorithm exists. But one of the two
candidates above is guaranteed to work.

Theology 48

This type of argument caused a huge uproar in the mathematics community
when first used by D. Hilbert in 1890 (finite basis theorem).

“This is not mathematics, this is theology.”
Paul Gordon

Gordon was upset since he had found a constructive, computational proof for
special case n = 2 in 1886, but had failed in all attempts to generalize the
argument to arbitrary n.

Hilbert handled the general case not by explicitly computing a solution, but by
showing that the assumption that there is no solution leads to a contradiction.

Later On 49

Felix Klein (of the eponymous bottle) strongly sup-
ported Hilbert’s work. A while later, following sugges-
tions of Klein and Gordon, Hilbert wrote a second pa-
per showing how his approach can actually yield some
bounds on the degree of the polynomials in question.

Gordon grudgingly concluded:

“Theology may have its uses.”

Finite Problems 50

The same trick works for any decision problem with only finitely many
instances x1, x2, . . . , xn:

This time there are 2n algorithms that are potential solutions:

A0, A1, . . . , A2n−2, A2n−1

We just may not know which of these algorithms is the right one.

But: The algorithm does exist, so the problem is decidable.
In other words, classical computability theory is ill-equipped to deal with finite
decision problems: the definition just does not bite.

So all this Computability Stuff is Useless? 51

For problems with a single instance like the Collatz Conjecture, Riemann
Hypothesis, P = NP problem, and so on: Yes. They simply don’t fit naturally
into this framework.

There is an algorithm that returns the correct answer, but this is an entirely
pointless observation since we have no clue which one it is.

However, in order to get useful information, we can try to exploit the fact that
undecidability and unsolvability can cast a noticeable shadow. For example,
Diophantine equations are not just undecidable in general, even individual
equations are often very difficult to deal with.

Another Wrong Point of View 52

Note that in practical computations one inevitably only deals with instances of
some limited size. Here there are only finitely many instances and so, in a
abstract computability sense, algorithms that deal with these are trivial.

Again, this is not a useful perspective: there is a lookup table that solves, say,
Satisfiability for these size-limited instances. However, as far as realizable
computation is concerned this table is just an illusion: it is

usually absurdly large (say, larger than the physical universe), and

for some problems we don’t even know how to compute single entries in it
efficiently.

It is much more productive to think of the problems as being truly infinite and
develop methods that work on arbitrary inputs.

And Collatz? 53

For the Collatz problem John Horton Conway, of Game-of-Life fame, found a
beautiful way to show how undecidability lurks nearby.

Conway’s Idea:
How about constructing infinitely many Collatz Conjectures?

More precisely, come up with a family of functions that generalize the Collatz
function slightly. Then ask if for one of these functions all orbits are ultimately
periodic.
The classical Collatz function will be just one in this family, so understanding
the whole family would of course solve the Collatz problem.

Conway’s Theorem 54

The hard part is to come up with a nice natural class of “Collatz-like”
functions. Here is Conway’s approach: define

Cn(a, b)(q · k + r) = ar · q + br

where a and b are two vectors of numbers of length k and 0 ≤ r < k.

The classical Collatz function is the special case

k = 2, a = (1, 6), b = (0, 4).

So now we have infinitely many functions to deal with (though one of them is
perhaps more interesting than all the others).

Conway-Collatz Problem 55

Problem: Conway-Collatz Problem
Instance: The parameters a, b.
Question: Is every orbit of Cn(a, b) ultimately periodic?

Theorem
The Conway-Collatz Problem is undecidable.
It remains undecidable even if all the bi’s are 0.

The theorem indicates that there is no good general way to answer questions
about Collatz-like functions. So it is not entirely surprising that the classical
Collatz function is also very difficult to analyze.

Conway’s T Function 56

A famous example of a Conway function other than the classical Collatz
function is the following:

T (2n) = 3n

T (4n + 1) = 3n + 1
T (4n − 1) = 3n − 1

This is just Cn(6, 3, 6, 3; 0, 3, 1, 2).

Proposition
T : N → N is a bijection.

Exercise
Prove that the T function is a bijection. Then look for cycles under T .

Plot 57

10 20 30 40 50

10

20

30

40

50

60

70

Looks very similar to the Collatz function.
But note that the lower line wobbles; there are really 3 linear functions here.

Some Cycles 58

Known finite cycles are:

(1),
(2, 3),
(4, 6, 9, 7, 5),
(44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59).

Open Problem:
Are there any other finite orbits?
In particular, is the orbit of 8 finite?

Orbit of 8 59

200 400 600 800 1000

10

20

30

40

50

This is a log-plot. It seems to suggest the orbit of 8 grows without bound, but
of course this is neither here nor there; maybe the values decrease after
A(100, 100) steps, A the Ackermann function.

Undecidability wrto a Theory 60

The original Collatz problem is finite, so the classical notion of decidability is
useless.

But there is another way one can try make sense out of the notion of a finite
problem being “undecidable.”

First, one fixes some formal system T (which is presumably adequate
to talk about the problem at hand, something like Peano arithmetic or
Zermelo-Fraenkel set theory).

Then one shows that T can neither prove nor refute the claim that the
problem at hand has a positive solution.

Classical example: the Continuum Hypothesis or the Axiom Of Choice in set
theory.

1 The Mandelbrot Set

2 Calculus and Fixed Points

3 Iteration and Decidability

4 Theory of Fixed Points

The Continuous Case 62

In the world of continuous functions there are a few well-known results that
guarantee the existence of a fixed point.

Theorem (Brouwer)
Any continuous map from the closed unit sphere in dimension n to itself has at
least one fixed point.

Theorem (Banach)
Every contraction map on a complete metric space has exactly one fixed point.

Recall: Lattices 63

To obtain comparable results in the discrete domain requires a bit of
preparatory work. We need to find the right algebraic structure (just as
complete metric spaces are the right structure for Banach’s theorem).

Definition
A lattice is an algebraic structure A = ⟨A, ⊓, ⊔⟩ with two binary operations,
referred to as meet and join that are both associative, commutative and
idempotent. Moreover, the absorption law holds:

x ⊓ (x ⊔ y) = x ⊔ (x ⊓ y) = x

Examples 64

Example
Boolean values true and false with logical connectives “and” and “or” form a
lattice.

Example
The powerset of any set with operations intersection and union form a lattice.

Example
Binary relations on a set form a lattice with intersection and union. Likewise,
equivalence relations form a lattice, albeit with a different meet operation.

Example
The positive integers with gcd and lcm form a lattice.

The Poset Interpretation 65

Another way to look at lattices is to consider a poset ⟨A, ≤⟩ .

If the poset is properly behaved, we can define binary operations

inf(x, y) = max
(

z ∈ A | z ≤ x, y
)

sup(x, y) = min
(

z ∈ A | x, y ≤ z
)

Then ⟨A, inf, sup⟩ is a lattice.

One the other hand, given a lattice we can define a partial order by

x ≤ y ⇐⇒ x ⊓ y = x.

This partial order has sups and infs which turn out to be exactly the join and
meet operations of the lattice.

Complete Lattices 66

In a lattice, the join and meet operations are binary by definition. Of course,
they can be generalized to a finite number of arguments, but there is a useful
requirement that sups and infs should exist for arbitrary subsets of A.

Definition
A lattice is complete if every subset of the carrier set has a supremum and an
infimum.

Note that every complete lattice must have a least and a largest element,
usually written ⊥ and ⊤.

Example
Every finite lattice is complete.
The infinite examples from above are all complete.
The reals with standard order form an incomplete lattice.

However, the closed interval [0, 1] ⊆ R with the standard order is a complete
lattice.

In fact, this property is the whole point of the real numbers, it enables calculus
and life on Mars. Otherwise we could live happily ever after with the rationals.

Exercise
Generalize this result to d dimensions.

Exercise
The natural numbers with divisibility form a complete lattice.

Monotonicity 68

In analysis, the existence of fixed points is a difficult topic. In our setting, there
is a very powerful theorem that often can be used to demonstrate the existence
of fixed points.

Definition
Let L be a complete lattice and f : L → L a map. f is monotonic if for all
x, y ∈ L:

x ≤ y implies f(x) ≤ f(y)

So monotonic simply means order preserving. Given a monotonic map one can
always define an increasing chain

⊥ ≤ f(⊥) ≤ f2(⊥) ≤ . . .

Lattices and Fixed Points 69

Theorem (Knaster-Tarski 1955)
Let L be a complete lattice and f : L → L a monotonic map on L. Then the
set of fixed points of f is a complete sublattice of L.

It follows from the theorem that fixed points exist; there may even be many of
them.

Moreover, there is always

a least fixed point µf and
a largest fixed point νf .

Proof, part of 70

To see that there is a largest fixed point define the set of all semi-fixed-points
elements

I = { x ∈ L | x ≤ f(x) }

Note that ⊥ ∈ I, f(I) ⊆ I and I contains all fixed points of f .
Let s = sup I (which exists by completeness).
Then for x ∈ I we have x ≤ s whence f(x) ≤ f(s) by monotonicity and so
x ≤ f(x) ≤ f(s). But then f(s) bounds I and s itselft must be a
semi-fixed-point, whence s ∈ I. But then f(s) = s and we have νf = s.

The least fixed point can be gotten by duality from the largest.

Set Operators 71

It is worth while repeating the argument in the special case where
f : P(A) → P(A) , in which case the whole argument comes down to basic set
theory.

Say, we want to demonstrate the existence of a least fixed point. This time,
define

I = { X ⊆ A | f(X) ⊆ X }

and let B =
⋂

I (which exists since A ∈ I). Then f(B) ⊆ B: for any
semi-fixed-point X, B ⊆ X by definition, hence f(B) ⊆ f(X) ⊆ X; thus
f(B) ⊆ B and B ∈ I.

But I is closed under f : f(X) ⊆ X implies f(f(X)) ⊆ f(X). So f(B) ∈ I,
and thus B ⊆ f(B). But then B is a fixed point, and necessarily the least.

Approximation 72

Another important way to obtain the least fixed point is to approximate it from
below: the least fixed point of f is the sup of the chain

µf = sup(fn(⊥)
∣∣ n ≥ 0)

At least in the case where the lattice is finite, this produces an actual
algorithm.

For example, minimization of DFAs can be interpreted this way.

Application: Equivalential Closure 73

Suppose we have a binary relation ρ on A.
Define the following operation f for any binary relation X on A:

f(X) = ρ ∪ IA ∪ X−1 ∪ (X • X)

The lattice of binary relations on A is clearly complete, and f is monotonic:
X ≤ Y implies f(X) ≤ f(y).

Then µf =
⋃

n<ω
fn(∅) is the equivalential closure of ρ. The closure ordinal is

ω since the chains required by transitivity are all of finite length.

Application: Banach’s lemma 74

Lemma
Let f : A → B and g : B → A be two arbitrary functions. Then there are
partitions A = A1 ∪ A2 and B = B1 ∪ B2 such that f(A1) = B1 and
g(B2) = A2.

Proof. We exploit the Knaster-Tarski theorem. Consider the powerset of A,
clearly a complete lattice.
For any X ⊆ A define

F (X) = A − g(B − f(X))

A moment’s thought reveals that F is indeed monotonic and thus has a least
fixed point.
But then A1 = µF works as required (make sure to verify this fact). 2

Cantor-Bernstein 75

Note that the Cantor-Bernstein theorem is a simple corollary to Banach’s
lemma: when f and g are both injective we have |A1| = |B1| and |A2| = |B2|.

This argument is considerably less complicated than the standard proof of
Cantor-Bernstein.

Exercise
Try to prove Banach’s lemma from scratch, without reference to the
Knaster-Tarski theorem. Try some special cases first, say, f maps to one point,
is surjective, and so on.

Exercise
Look up some standard proofs for Cantor-Bernstein. How do they compare to
the proof above?

Summary 76

Iteration produces complicated behavior even in simple functions.
It matters little whether the domain is discrete or continuous.
Many algorithms can be construed as fixed point constructions.
Some computational environments such as Mathematica offer a fixed
point operation as a primitive.
There is a memoryless linear time algorithm to compute transient and
period of a map on a finite carrier set.
Questions about the orbits of functions may easily be undecidable, even if
the functions in question are very simple.
There are results in the discrete realm that are similar to classical fixed
point theorems in analysis, but they require a bit of machinery.

	The Mandelbrot Set
	Calculus and Fixed Points
	Iteration and Decidability
	Theory of Fixed Points

