
CDM
Iteration

Klaus Sutner

Carnegie Mellon University
Spring 2023

1 Iteration, Trajectories and Orbits

2 ∗ Finding Cycles

3 Goodstein Sequences

4 ∗ Finding Cycles

Computational Memes 2

There are several general ideas that are useful to organize computation,
perhaps the two most important ones being

Recursion (self-similarity)

Iteration (repetition)

Recursion is quite popular and directly supported in many programming
languages.

Iteration usually requires some amount of extra work (and, to really make
sense, support for functions as first class citizens).

Droste Effect 3

Menger Sponge 4

Iteration 5

Definition
Let f : A → A be an endofunction. The kth power of f (or kth iterate of f) is
defined by induction as follows:

f0 = IA

fk = f ◦ fk−1

Here IA denotes the identity function on A and f ◦ g denotes composition of
functions.

Informally, this just means: compose function f (k − 1)-times with itself.

fk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k terms

General Laws 6

Without any further knowledge about f there is not much one can say about
the iterates fk. But the following always holds.

Lemma (Laws of Iteration)

fn ◦ f = fn+1

fn ◦ fm = fn+m

(fn)m = fn·m

Exercise
Prove these laws by induction using associativity of composition.

Wurzelbrunft’s Idea 7

Prof. Dr. Alois Wurzelbrunft∗ stares at these equations and immediately
recognizes a deep analogy to exponentiation.
He also remembers that there is a method for fast exponentiation based on
squaring:

a2e = (ae)2

a2e+1 = (ae)2 · a

which allows us to compute ae in O(log e) multiplications.

Wurzelbrunft’s Conclusion:
There is an analogous “fast iteration” method.

∗A famous if fictitious professor in the Bavarian hinterland.

Aside 8

Good mathematicians see analogies between theorems
or theories; the very best ones see analogies between
analogies.

S. Banach

So is Wurzelbrunft brilliant?

Fast Iteration 9

Suppose we want to compute f1000. The obvious way requires 999
compositions of f with itself.

By copying the standard divide-and-conquer approach for fast exponentiation
we could try

f2n = (fn)2

f2n+1 = f ◦ (fn)2

This seems to suggest that we can compute fn(x) in O(log n) applications of
the basic function f .

After all, it’s just like exponentiation, right?

Computational Compressibility 10

There is an interesting idea here: we would like to take a plain computation

C = C0, C1, C2, . . . , C42, . . . , Cn

and somehow translate it into another computation

C′ = C′
0, C′

1, . . . , C′
m

such that

the result is the same, but
m ≪ n

Of course, this won’t always be possible, but sometimes we might be able to
“compress” a computation (by using a smarter algorithm).

Closed Forms 11

Consider the orbit of a under the rational function (this is a clear case of abuse
of a Möbius transformation)

f(x) = 2 + 2x

3 + x

One can show that
f t(a) = 1 + 3(a − 1)

1 − a + (a + 2)4t

So there is no need to iterate f , we can simply do the arithmetic.

But if you insist . . . 12

f5(a) =

2 +

2

2+

2

(
2+

2
(

2+ 2(2+2a)
3+a

)
3+ 2+2a

3+a

)
3+

2+ 2(2+2a)
3+a

3+ 2+2a
3+a

3+

2+
2
(

2+ 2(2+2a)
3+a

)
3+ 2+2a

3+a

3+
2+ 2(2+2a)

3+a

3+ 2+2a
3+a

3 +

2+

2

(
2+

2
(

2+ 2(2+2a)
3+a

)
3+ 2+2a

3+a

)
3+

2+ 2(2+2a)
3+a

3+ 2+2a
3+a

3+

2+
2
(

2+ 2(2+2a)
3+a

)
3+ 2+2a

3+a

3+
2+ 2(2+2a)

3+a

3+ 2+2a
3+a

Linear Maps 13

If the function f in question is linear it can be written as

f(x) = M · x

where M is a square matrix over some suitable algebraic structure. Then

f t(x) = M t · x

and M t can be computed in O(log t) matrix multiplications.

So this is an exponential speed-up over the standard method.

Polynomial Maps 14

Another important case is when f is a polynomial map

f(x) =
∑

aix
i

given by a coefficient vector a = (ad, . . . , a1, a0).

In this case the coefficient vector for f ◦ f can be computed explicitly by
substitution. This is useful in particular when computation takes place in a
quotient ring such as R[x]/(xn − 1) so that the expressions cannot blow up.

Again, an exponential speed-up over the standard method.

But Beware of Hasty Conclusions 15

But we cannot conclude that f t(x) can always be computed in O(log t)
operations.

The reason fast exponentiation and the examples above work is that we can
explicitly compute a representation of f ◦ f , given the representation of f .

But, in general, there is no fast representation for f ◦ f , we just have to
evaluate f twice.

Just think of f as being given by an executable, a compiled piece of C code.
We can wrap a loop around the executable to compute f t, but that just
evaluates f t-times, in the obvious brute-force way. No speed-up whatsoever.

Exercise
Ponder deeply. Assume the speed-up trick always works and figure out what
that would mean for complexity theory.

Hasty Conclusion I 16

Speaking about hasty conclusions, here is a simple inductively defined sequence
of integers.

a1 = 1
an = an−1 + (an−1 mod 2n)

Thus, the sequence starts like so:

1, 2, 4, 8, 16, 20, 26, 36, 36, 52, 60, 72, 92, 100, 110, 124, 146, 148, 182, 204

This seems rather complicated. The function appears to be increasing in a
somewhat complicated manner.

Alas, there is a rude surprise.

Ultimately Linear 17

The sequence is ultimately linear: a396+k = a396 + k · 194 for k ≥ 0.

100 200 300 400 500 600

20000

40000

60000

80000

100000

100 200 300 400 500 600

200

400

600

800

The plot on the left is the sequence, on the right (in red) are the forward
differences.

Exercise
Figure out why the sequence is ultimately linear.

Hasty Conclusion II 18

Here is another strange integer sequence:

an = ⌈2/(21/n − 1)⌉ − ⌊2n/ log 2⌋

This time, the sequence starts like so:

0, . . .

and continues like this for a long, long time, for trillions of terms.

Note that it is not so easy to compute the terms. At any rate, it sure looks like
the sequence is constant 0. Alas

a777 451 915 729 368 = 1

Iteration versus Recursion 19

Iteration can be construed as a special case of primitive recursion.

F (0, y) = y

F (x + 1, y) = f(F (x, y))

Then F (x, y) = fx(y).

This is really no more than the standard bottom-up approach to computing an
primitive recursive function, expressed in an elegant and concise way.

As Iteration 20

Conversely, iteration can be used to express recursion. Suppose

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

Define a new function H by

H : N × N × Nk −→ N × N × Nk

H(x, z, y) = (x + 1, h(x, z, y), y)

Then

f(x, y) = snd(Hx(0, g(y), y))

This is perhaps the most natural definition, but if we wanted to we could make
H unary by coding everything up as a sequence number.

Unary Iteration 21

More precisely, suppose we have some simple basic functions such as

x + y x ∗ y x
•− y rt(x)

Here rt(x) is the integer part of
√

x. These suffice to set up coding machinery,
which can then be used to replace primitive recursion by iteration. It suffices to
define functions via

f(x) = gx(0)

to get the same class as from the recursions above.

Exercise
Come up with a precise version of this statement (define a clone) and give a
detailed proof.

Trajectories and Orbits 22

Definition
The trajectory or orbit of a ∈ A under f is the infinite sequence

orbf (a) = a, f(a), f2(a), . . . , fn(a), . . .

The set of all infinite sequences with elements from A is often written Aω.
Hence the we can think of the trajectory as an operation of type

(A → A) × A → Aω

that associates a function on A and element in A with an infinite sequence
over A.

Terminology Warning 23

Sometimes one is not interested in the actual sequence of points but rather in
the set of these points:

{ f i(a) | i ≥ 0 }

While the sequence is always infinite, the underlying set may well be finite,
even when the carrier set is infinite.

In a sane world one would refer to the sequences as trajectories, and use the
term orbit for the underlying sets. Alas, in the literature the two notions are
hopelessly mixed up.
So, when we refer to a “trajectory” we will always mean the sequence, but,
bending to custom, we will use “orbit” for both.

Digression: Dedekind’s Ketten (Chains) 24

Here is a clever definition due to Dedekind: given an endofunction f and a
point a, the corresponding chain is defined to be⋂

{ X ⊆ A | a ∈ X, f(X) ⊆ X }

Thus, the chain is the least set that contains a and is closed under f . That is
exactly the orbit of a under f , considered as a set.

Who cares?

Dedekind’s definition does not require the natural numbers. In fact, it can be
used to define them. In Dedekind’s view, this means that arithmetic can be
reduced to logic.

From Chains to Naturals 25

Here is how. Suppose we have a function f : A → A and a point a ∈ A such
that

f is an injection,
a is not in the range of f ,
A is the chain of f and a.

Dedekind calls these sets simply infinite.

We can think of a as 0 and, more generally, we can think of fn(a) as n.

So this is a way of describing the natural numbers, the smallest infinite set,
without any hidden references to the naturals.

The Price: Impredicativity 26

According to Dedekind, the chain C defined by f and a has the form

C =
⋂

{ X ⊆ A | a ∈ X, f(X) ⊆ X }

But note that C is one of the X’s on the right hand side. So there is some
(non-vicious) circularity in this approach. Most mathematicians would not bat
an eye when confronted with definitions like this one, they are totally standard.

And the payoff is huge. For example, when Bernstein told Dedekind about his
correct proof of the “Cantor-Schröder-Bernstein” theorem, he was shocked to
hear that Dedekind had a much better proof, based on his chains.

The Lasso 27

At any rate, if the carrier set is finite, all trajectories must ultimately wrap
around and all orbits must be finite:

What changes is only the length of the transient part and the length of the
cycle (in the picture 5 and 11).

Fixed Points, Cycles and Periods 28

Definition
Let f : A → A be an endofunction.

a ∈ A is a fixed point of f if f(a) = a.

A sequence a0, . . . , an−1 in A is a cycle of f if f(ai) = ai+1 mod n.

A cycle of length n is also called an n-cycle.

The orbit of a under f is periodic if ∃ p > 0 : fp(a) = a.

The orbit of a under f is ultimately periodic ∃ t ≥ 0, p > 0 : f t+p(a) =
f t(a).

Cycles and fixed points are closely related:
a0, . . . , an−1 is an n-cycle of f iff a0 is a fixed point of fn.

Transient and Period 29

If A is finite, then any orbit of f : A → A must be ultimately periodic:

f t(x) = f t+p(x)

for some t ≥ 0, p > 0, which values depend on x.

Definition
The least t and p such that f t(x) = f t+p(x) is the transient length and the
period length of the orbit of x (wrt. f).

Thus, an orbit is periodic iff the transient is 0.
Also, a function on a finite set has only transients of length 0 iff the function is
injective iff it is a permutation.

Limit Cycles 30

The lasso shows the general shape of any single orbit, but in general orbits
overlap. All orbits with the same limit cycle are called a basin of attraction in
dynamics.

The Functional Digraph 31

As the last picture shows, it is natural to think of f as a directed graph on the
carrier set where the edges indicate the action of f .

Definition
The functional digraph (or diagram) of f : A → A is defined as Gf = ⟨A, E⟩
where E = { (x, f(x)) | x ∈ A }.

Note that every vertex in Gf has outdegree 1, but indegrees may vary.

The non-trivial strongly connected components of the digraph are the limit
cycles of the function. The weakly connected components are the basins of
attraction.

Analyzing the Diagram 32

There are several natural parameters associated with the digraph that provide
useful information about the function in question.

Indegree. If all nodes have the same indegree k the function is k-to-1.
Otherwise, determine the maximum/minimum indegree, the distribution
of values.

Periods. Count the number of limit cycles, and their length.

Transients. Determine the length of the transients leading to limit cycles.

At least when the carrier set is finite we would like to be able to determine
these parameters easily. Alas, even for relatively simple maps this turns out to
be rather difficult.

Reachability 33

The geometric perspective afforded by the diagram also suggests to study
path-existence problems.

Definition
Let f be a function on A and a, b ∈ A two points in A. Then point b is
reachable from a if for some i ≥ 0:

f i(a) = b

In other words, point y belongs to the orbit of x.

Proposition
Reachability is reflexive and transitive but in general not symmetric.

Reachability is symmetric when A is finite and f injective (and therefore a
permutation): each orbit then is a cycle and forms an equivalence class.

Confluence (aka Basins of Attraction) 34

Definition
Let f be a function on A and a, b ∈ A two points in A. Points a and b are
confluent if for some i, j ≥ 0:

f i(a) = f j(b)

In other words, the orbits of a and b merge, they share the same limit cycle
(which may be infinite and not really a cycle).

Reachability implies confluence but not conversely. For finite carrier sets
reachability is the same as confluence iff the map is a bijection.

Confluence is an Equivalence 35

Proposition
Confluence is an equivalence relation.

Reflexivity and symmetry are easy to see, but transitivity requires a little
argument.
Let f i(x) = f j(y) and fk(y) = f l(z), assume j ≤ k. Then with d = k − j ≥ 0
we have

f i+d(x) = f j+d(y) = fk(y) = f l(z).

Each equivalence class contains exactly one cycle of f , and all the points whose
orbits lead to this cycle – just as in the last picture.

1 Iteration, Trajectories and Orbits

2 ∗ Finding Cycles

3 Goodstein Sequences

4 ∗ Finding Cycles

Calculating Transients and Periods 37

How do we compute the transient t and period p of the orbit of a ∈ A under
f : A → A for finite carrier sets A?

The obvious brute force approach is to use a container to keep track of
everything we have already seen:

a, f(a), f2(a), . . . , f i(a)

and then to compare f i+1(a) to all these previous values.

In most cases, the data structure of choice is a hash table or tree: we can
check whether f i+1(a) is already present in expected constant time or
logarithmic time, respectively. Memory requirement is linear in the size of the
orbit assuming the elements in A require constant space (a fairly safe
assumption, if the elements are big use pointers).

Floyd’s Trick 38

A (simplified version of a) classical problem from the early days of Lisp:
Suppose we have a pointer-based linked list structure in memory and we want
to check if there are any cycles in the structure (as opposed to having all lists
end in nil).

We can think of this as an orbit problem:

A is the set of all nodes of the structure,
f(x) = y means there is a pointer from x to y.

The Problem:
Suppose further the structure consumes 90% of memory, so we cannot afford
to build a large hash table or tree.

Can we compute transients and periods in O(1) space?

Time/Space Tradeoff 39

At first glance, this may seem quite impossible: if we forget already discovered
elements we obviously cannot detect cycles. Right?

Not at all: we have an element b = f t(a), and we want to check if it is new.

We can simply compare b to all fs(a) for s < t.

This requires an absurd amount of recomputation and is thus highly inefficient,
but it trivially works and it uses only constant memory.

The method is actually quite simple: instead of storing an object, we
recompute whenenver necessary.

A Memoryless Approach 40

Here is a better way to handle the time/space tradeoff: race two pebbles down
the orbit.

u = f(a);
v = f(u);
while(u != v) {

u = f(u);
v = f(f(v));

}

Claim
Upon termination, u = v is a position on the cycle.

Pebble Race 41

Think of two pebbles u and v, moving at speed 1 and 2, respectively.

The slow pebble u enters the limit cycle at time t, the transient, when the fast
pebble v is already there. From now on, v gains one place on u at each step.
So pebble v must catch up at time s where s ≤ t + p, where p is the period.
The meeting time is called the Floyd-time.

Once we have a foothold on the cycle it is not hard to compute transient and
period, see below.

One can make a nice movie out of this. OK, it is pretty boring after all, but
what do you expect.

Example 42

Here the transient is 6, and the period 17.

The Floyd-time here is 17.

Tables 43

One can also write out a simple table of the process. Here we think of the
points on the orbit as −τ, . . . , −1, 0, 1, . . . , π − 1. To avoid visual clutter, we
write −k as k.

Not as pretty, but potentially more useful. Note that when the slow pebbles
enters the cycle at time 6, the fast one is in position 6. 6 + 11 = 17.

How about the Period? 44

Suppose we already have a point b on the cycle.

t = 1;
u = f(b);

while(u != b) {
u = f(u);
t++;

}
return t;

We walk around the cycle, and count steps.

How about the Transient? 45

Suppose we already know p, the period.

t = 0;
u = a;
v = iterate(f, a, p); // v = fˆp(a)
while(u != v) {

u = f(u);
v = f(v);
t++;

}
return t;

v has a headstart of p. So, when u first enters the cycle, v has just gone
around once, and they meet at the contact point.

Floyd’s Cycle Finding Algorithm 46

Let us assume f to be computable in time O(1) and elements of the carrier set
A to take space O(1).

Theorem
One can determine the transient t and period p of a point in A under f in time
O(t + p), and space O(1).

Linear time cannot be avoided in general (why?), so this is optimal.

Beware of Permutations 47

Floyd’s cycle finding algorithm is an excellent general purpose tool in particular
when the evaluation of the function in question is cheap.

But note that in the special case where the function is known to be a
permutation on a finite domain there is, of course, no need to use Floyd’s or
similar cycle finding algorithms: since the components of the diagram are all
cycles we can simply trace a cycle once to determine its length. So the natural
method to compute cycle length is automatically memoryless (if we assume the
objects in question can be stored in constant space).

Incidentally, determining cycle lengths of permutations is very important for
some advanced counting methods, more later.

Generalizations 48

It is tempting to try different pebble speeds. Here is transient 6, period 17,
pebbles at speeds 2 and 3, respectively.

Surprisingly, the pebbles meet at time 17, just like the ordinary algorithm.
Ponder deeply.

Floyd-Times 49

Floyd-Times Chaos 50

This uses speeds 2 and 4. Seems fairly complicated.

Some Questions 51

Exercise
What would happen to the Floyd-time if we changed the pebble speeds to u
and v, where 1 ≤ u < v? Would the algorithm even work for all transients and
period?

Exercise
Try to find an algebraic way to compute the Floyd-time directly from the
parameters τ and π. Do this for the (1, 2) version first, then generalize to
speeds u < v.

Exercise
Call the place where the pebbles meet the Floyd-point. Study it.

Brent’s Algorithm 52

Here is a method to compute the period using “teleportation.”

slow = a;
fast = f(a);
cnt = pow2 = 1;
while(fast != slow)

if(cnt == pow2)
{ slow = fast; cnt = 0; pow2 *= 2; }

fast = f(fast);
cnt++;

return cnt;

Exercise
Figure out how this works. Compare its performance to Floyd’s method.

More 53

There is another algorithm due to Nivasch that uses a bit of extra memory (a
small stack) to speed up the search.

Applications:

discrete dynamical systems (such as cellular automata)

Pollard’s factorization method

analysis of hash functions

1 Iteration, Trajectories and Orbits

2 ∗ Finding Cycles

3 Goodstein Sequences

4 ∗ Finding Cycles

A Wild Iteration 55

We have already seen that iteration can produce very rapidly growing functions
(much like recursion). Here is another example where iteration produces a
rather perplexing result: every orbit ends in fixed point 0, though it looks like it
should diverge towards infinity.

Suppose we write a number in base 2, say

266 = 28 + 23 + 2

We can turn this into the complete binary expansion by writing the exponents
also in base 2, and so on.

266 = 222+1
+ 22+1 + 2

where we really should write 20 instead of 1, but c’mon.

Base Bump 56

Now suppose we replace 2 in the representation everywhere by 3:

333+1
+ 33+1 + 3

Unsurprisingly, this new number is much larger:

443426488243037769948249630619149892887 ≈ 4 × 1038

Next, we write this number in complete base 3, and bump the base to 4. We
get something like 3 × 10616.

Then we write this number in complete base 4 and bump to 5 . . .

Goodstein’s Theorem 57

Obviously, this process leads to a very rapidly increasing sequence of numbers.

Now suppose we follow the base bump by subtracting 1, so the result will be a
tiny little bit smaller than with a pure base bump. Call such a sequence a
Goodstein sequence.

We expect Goodstein sequences to diverge since the base bump causes a huge
increase, subtracting 1 should really not matter much. Alas . . .

Theorem
All Goodstein sequences converge to 0.

Example? 58

It is very hard to come up with good examples.

Starting at 2 and 3 we get the short sequences

2, 2, 1, 0
3, 3, 3, 2, 1, 0

But starting at 4 things spin out of control already:

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, . . . , 4026531832, . . .

It takes some 10121,210,695 steps to get to 0!

Goodstein’s proof of his theorem uses ordinals and is extremely elegant.

Unprovability 59

More precisely, Goodstein’s argument uses induction up to

ϵ0 = ωωω...

But induction to ϵ0 is enough to prove that Peano arithmetic is consistent. It is
thus not too surprising that (PA) cannot handle Goodstein’s theorem.

Theorem
Goodstein’s theorem is not provable in Peano arithmetic.

But Why? 60

Why does this really work? Because once the base is sufficiently large, we keep
chipping away at the constant term until we ultimately have to borrow from
one of the previous terms.

Write Gb(n) for the term in the sequence that will undergo a bump from base
b to b + 1. Let b = 402653183. Then

Gb(4) = b2

Gb+1(4) = b(b + 1) + b

Gb+2(4) = b(b + 2) + b − 1
Gb+3(4) = b(b + 3) + b − 2

. . .

G2b+1(4) = b(2b + 1)

Ponder deeply.

But It’s Computable 61

So the convergence proof is very hard in a sense, but note that the stopping
time function

n 7→ min
(

b | Gb(n) = 0
)

is trivially computable: just compute the damn sequence.

Again: Computable functions can be monsters, even when they are total.

1 Iteration, Trajectories and Orbits

2 ∗ Finding Cycles

3 Goodstein Sequences

4 ∗ Finding Cycles

Calculating Transients and Periods 63

How do we compute the transient t and period p of the orbit of a ∈ A under
f : A → A for finite carrier sets A?

The obvious brute force approach is to use a container to keep track of
everything we have already seen:

a, f(a), f2(a), . . . , f i(a)

and then to compare f i+1(a) to all these previous values.

In most cases, the data structure of choice is a hash table or tree: we can
check whether f i+1(a) is already present in expected constant time or
logarithmic time, respectively. Memory requirement is linear in the size of the
orbit assuming the elements in A require constant space (a fairly safe
assumption, if the elements are big use pointers).

Floyd’s Trick 64

A (simplified version of a) classical problem from the early days of Lisp:
Suppose we have a pointer-based linked list structure in memory and we want
to check if there are any cycles in the structure (as opposed to having all lists
end in nil).

We can think of this as an orbit problem:

A is the set of all nodes of the structure,
f(x) = y means there is a pointer from x to y.

The Problem:
Suppose further the structure consumes 90% of memory, so we cannot afford
to build a large hash table or tree.

Can we compute transients and periods in O(1) space?

Time/Space Tradeoff 65

At first glance, this may seem quite impossible: if we forget already discovered
elements we obviously cannot detect cycles. Right?

Not at all: we have an element b = f t(a), and we want to check if it is new.

We can simply compare b to all fs(a) for s < t.

This requires an absurd amount of recomputation and is thus highly inefficient,
but it trivially works and it uses only constant memory.

The method is actually quite simple: instead of storing an object, we
recompute whenenver necessary.

A Memoryless Approach 66

Here is a better way to handle the time/space tradeoff: race two pebbles down
the orbit.

u = f(a);
v = f(u);
while(u != v) {

u = f(u);
v = f(f(v));

}

Claim
Upon termination, u = v is a position on the cycle.

Pebble Race 67

Think of two pebbles u and v, moving at speed 1 and 2, respectively.

The slow pebble u enters the limit cycle at time t, the transient, when the fast
pebble v is already there. From now on, v gains one place on u at each step.
So pebble v must catch up at time s where s ≤ t + p, where p is the period.
The meeting time is called the Floyd-time.

Once we have a foothold on the cycle it is not hard to compute transient and
period, see below.

One can make a nice movie out of this. OK, it is pretty boring after all, but
what do you expect.

Example 68

Here the transient is 6, and the period 17.

The Floyd-time here is 17.

Tables 69

One can also write out a simple table of the process. Here we think of the
points on the orbit as −τ, . . . , −1, 0, 1, . . . , π − 1. To avoid visual clutter, we
write −k as k.

Not as pretty, but potentially more useful. Note that when the slow pebbles
enters the cycle at time 6, the fast one is in position 6. 6 + 11 = 17.

How about the Period? 70

Suppose we already have a point b on the cycle.

t = 1;
u = f(b);

while(u != b) {
u = f(u);
t++;

}
return t;

We walk around the cycle, and count steps.

How about the Transient? 71

Suppose we already know p, the period.

t = 0;
u = a;
v = iterate(f, a, p); // v = fˆp(a)
while(u != v) {

u = f(u);
v = f(v);
t++;

}
return t;

v has a headstart of p. So, when u first enters the cycle, v has just gone
around once, and they meet at the contact point.

Floyd’s Cycle Finding Algorithm 72

Let us assume f to be computable in time O(1) and elements of the carrier set
A to take space O(1).

Theorem
One can determine the transient t and period p of a point in A under f in time
O(t + p), and space O(1).

Linear time cannot be avoided in general (why?), so this is optimal.

Beware of Permutations 73

Floyd’s cycle finding algorithm is an excellent general purpose tool in particular
when the evaluation of the function in question is cheap.

But note that in the special case where the function is known to be a
permutation on a finite domain there is, of course, no need to use Floyd’s or
similar cycle finding algorithms: since the components of the diagram are all
cycles we can simply trace a cycle once to determine its length. So the natural
method to compute cycle length is automatically memoryless (if we assume the
objects in question can be stored in constant space).

Incidentally, determining cycle lengths of permutations is very important for
some advanced counting methods, more later.

Generalizations 74

It is tempting to try different pebble speeds. Here is transient 6, period 17,
pebbles at speeds 2 and 3, respectively.

Surprisingly, the pebbles meet at time 17, just like the ordinary algorithm.
Ponder deeply.

Floyd-Times 75

Floyd-Times Chaos 76

This uses speeds 2 and 4. Seems fairly complicated.

Some Questions 77

Exercise
What would happen to the Floyd-time if we changed the pebble speeds to u
and v, where 1 ≤ u < v? Would the algorithm even work for all transients and
period?

Exercise
Try to find an algebraic way to compute the Floyd-time directly from the
parameters τ and π. Do this for the (1, 2) version first, then generalize to
speeds u < v.

Exercise
Call the place where the pebbles meet the Floyd-point. Study it.

Brent’s Algorithm 78

Here is a method to compute the period using “teleportation.”

slow = a;
fast = f(a);
cnt = pow2 = 1;
while(fast != slow)

if(cnt == pow2)
{ slow = fast; cnt = 0; pow2 *= 2; }

fast = f(fast);
cnt++;

return cnt;

Exercise
Figure out how this works. Compare its performance to Floyd’s method.

More 79

There is another algorithm due to Nivasch that uses a bit of extra memory (a
small stack) to speed up the search.

Applications:

discrete dynamical systems (such as cellular automata)

Pollard’s factorization method

analysis of hash functions

	Iteration, Trajectories and Orbits
	* Finding Cycles
	Goodstein Sequences
	* Finding Cycles

