
CDM
(Semi) Decidability

Klaus Sutner
Carnegie Mellon University
Fall 2023

1 ∗ Solving Problems

2 Decidability

3 Semidecidability

4 Diophantine Equations

Computability and Problems 2

In TCS and math, the main interest in the machinery of computability
comes from the desire to solve certain discrete problems. Here are the
most important types:

Decision Problems Return a Yes/No answer.

Counting Problems Count objects of a certain kind.

Function Problems Calculate a certain function.

Search Problems Select one particular solution.

Decision Problems 3

Definition
A decision problem consists of a set of instances and a subset of
Yes-instances.

Problem: Primality
Instance: A natural number x.
Question: Is x a prime number?

Here the set of all instances is N and the set of Yes-instances is
{ p ∈ N | p prime }.

The answer (solution) to any decision problem is just one bit (true or
false).

Counting Problems 4

Definition
A counting problem consists of a set of instances, each instance I is
associated with a set of “solutions” sol(I). We need to calculate the
cardinality of sol(I).

Problem: Prime Counting
Instance: A natural number x.
Solution: The number of primes p ≤ x.

Here the set of all instances is N and the “solutions” for x are
{ p ≤ x | p prime }. In the literature, this function is denoted π(x).

The answer to a counting problem is always a natural number.

Function Problems 5

Definition
A function problem consists of a set of instances and, for each instance I,
a unique solution sol(I).

Problem: Next Prime
Instance: A natural number x.
Solution: The least prime p > x.

Instances are again N and the solution for x ∈ N is sol(x) = p where p is
the appropriate prime (uniquely determined).
We insist that there always is a solution (otherwise sol would be a partial
function).

Search Problems 6

Definition
A search problem consists of a set of instances and, for each instance I, a
set of solutions sol(I).

In this case, “the” solution is not required to by unique. And, we allow
for sol(I) to be empty. This turns out to be very convenient in practice.

Problem: Factor
Instance: A natural number x.
Solution: A natural number z, 1 < z < x, dividing x.

Note that the set of solutions is empty if x is prime.

Solving a Problem 7

To solve a decision problem, a computable function has to accept
each instance of the problem as input, and return “Yes” or “No”
depending on whether the instance is a Yes-instance.

To solve a counting problem, a computable function has to accept
each instance x of the problem as input, and return the appropriate
count |sol(x)| as answer.

To solve a function problem, a computable function has to accept
each instance x of the problem as input, and return the unique
sol(x).

To solve a search problem, a computable function has to accept
each instance x of the problem as input, and return either an ele-
ment of sol(x) or “No” if sol(x) is empty (the instance has no solu-
tions).

Connections 8

Note that Primality, Prime Counting and Next Prime are closely
connected: an algorithm for one problem can be turned into an algorithm
for the other, plus a modest bit of overhead (a white lie). This idea of a
reduction is critical in computability theory and in complexity theory.

Factor is a bit different, though: there are primality tests that provide no
insight into factors of a composite number.

In fact, we now know that Primality is easy in the sense that there is a
polynomial time algorithm for it, but we fervently hope that Factor will
turn out to be hard (certain cryptographic methods will fail otherwise).

Instances 9

Our examples have N as the set of instances. In general, for some general
decision problem Π we may have

a set IΠ of instances, and

a set YΠ ⊆ IΠ of Yes-instances.

For example, IΠ might be the collection of all ugraphs, and YΠ could be
the collection of all connected ugraphs.

If we code everything as naturals, then IΠ is always trivial (certainly
p.r.). The same holds for the other types of problems.

More Instances 10

One might wonder what an algorithm is supposed to do with input that
is not an instance of the problem in question.

There are two choices:

We don’t care: the behavior of the algorithm can be arbitrary.

More realistic: the algorithm returns some default output. This is
perfectly reasonable since the collection of all inputs is always triv-
ially decidable, certainly polynomial time.
Something very fishy is going on if it takes a lot of effort even just
to recognize a valid instance.

Simplifying 11

Since the collection of instances IΠ is always trivial, one usually ignores it
altogether.

Instead one focuses on the set of Yes-instances YΠ and identifies its
complexity with the complexity of Π.

In particular, the problem Π is undecidable iff YΠ is so undecidable.

Canonical Representations 12

Another issue is the choice of input data structure. Fortunately, in all
practical cases there seems to be a canonical, natural choice. Essentially,
all that is needed is:

Natural numbers are given in binary.

Nested lists of objects (hereditarily finite lists).

Note that numbers could actually be expressed as lists, but that seems a
bit excessive (we might as well descend all the way into misery and use
pure set-theory).

But recall that we ignore efficiency entirely at this point; we are only
concerned with abstract computability. Things get trickier in the realm of
low complexity classes.

Honest Instances (or: Don’t Cheat) 13

In all our models the input must be given in explicit, unobfuscated form.

Not allowed are tricks like the following:

Encode natural number n as ⟨1, n⟩ whenever n is prime;
and as ⟨0, n⟩ when n is compound.

With this “input convention” primality testing would be trivial, but the
coding procedure requires a lot of computational effort.

Worse, a similar trick could be used to trivialize any computational
problem: just code the solution as part of the input.

Fuggedaboudit.

Canonical Representations 14

One might worry that dealing with specific data structures is messy, but
in all practical cases there seems to be a canonical, natural choice.
Essentially, all that is needed is:

Natural numbers are given in binary.

Nested lists of objects (hereditarily finite lists).

Using standard coding machinery, all these representations can be
translated into a natural number; in an intuitive, effective manner.

Of course, efficiency considerations fall by the wayside in this approach.
If you want to get mileage out of existing physical realizations of
computation you need something like C.

1 ∗ Solving Problems

2 Decidability

3 Semidecidability

4 Diophantine Equations

Decidability 16

Informally, a problem is decidable if there is a decision algorithm A that
returns Yes or No depending on whether the input has the property in
question.

x

Yes

No

A

Formally . . . 17

We can easily model this in terms of computable functions:

Definition
A set R ⊆ Nk is decidable if the characteristic function charR is
computable.
A decision problem is decidable if the set of Yes-instances is decidable.

Note that the characteristic function is always total: no matter what the
input is, the computation will be finite and will produce a result.

Terminology 18

In keeping with the old recursive/partial recursive nomenclature, a
decideable set is also called recursive.

This is arguably not exactly great terminology, but it is firmly entrenched.

Gottfried Leibniz (1646–1716) 19

In a way, the idea of decidability can be traced back to Leibniz’s ars
magna.

Ars Magna 20

ars inveniendi: generate all true scientific statements.

ars iudicandi: decide whether a given scientific statement is true.

It is obvious that if we could find characters or signs suited for
expressing all our thoughts as clearly and as exactly as arithmetic
expresses numbers or geometry expresses lines, we could do in all
matters insofar as they are subject to reasoning all that we can do
in arithmetic and geometry. For all investigations which depend
on reasoning would be carried out by transposing these characters
and by a species of calculus.

Decision Algorithms 21

Decision problems have been around since the day of the flood: one is
interested in checking whether a number is prime, whether a polynomial
is irreducible, whether a polygon is convex, and so on. Gauss certainly
understood the computational difficulty of primality checking.

Leibniz notwithstanding, the formal study of decision problems from a
computational perspective is relatively new.

The first big splash came in 1900, when Hilbert presented his famous list
of 23 open problems at the International Congress of Mathematicians in
Paris.

Hilbert’s List 22

Hilbert’s list was enormously influential throughout the 20th century.

Some of Hilbert’s Problems 23

1. Prove the Continuum Hypothesis. Well-order the reals.

2. Prove that the axioms of arithmetic are consistent.
. . .

8. Prove the Riemann Hypothesis.
. . .

10. Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: to devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

Entscheidungsproblem 24

The Entscheidungsproblem is solved when one knows a pro-
cedure by which one can decide in a finite number of operations
whether a given logical expression is generally valid or is satisfi-
able. The solution of the Entscheidungsproblem is of fundamen-
tal importance for the theory of all fields, the theorems of which
are at all capable of logical development from finitely many ax-
ioms.

D. Hilbert, W. Ackermann
Grundzüge der theoretischen Logik, 1928

A Hedge 25

Note that Hilbert and Ackermann hedge a bit: the decision procedure for
the Entscheidungsproblem needs to work only for areas where the
fundamental assumptions can be finitely axiomatized.

That leaves open the possibility that some part of math might not be
finitely axiomatizable, and thus outside of the reach of the
Entscheidungsproblem.

Still, J. Herbrand pointed out that

In a sense, the Entscheidungsproblem is the most general
problem of mathematics.

Aside: Hardness 26

Hilbert’s dream failed, there is no algorithm to solve the
Entscheidungsproblem.

But we can scale back a bit: try to solve the Entscheidungsproblem only
for a small domain. For example, only worry about propositional logic
(rather than full first-order). In this capacity, the Entscheidungsproblem
is an excellent source of difficult problems in complexity theory.

For suitable versions of the Entscheidungsproblem, instead of
undecidability, we get computational hardness. For example, for NP, we
only need Boolean formulae of type

∃ x1, . . . , xn φ(x1, . . . , xn)

Closure Properties 27

Lemma
The decidable sets are closed under intersection, union and complement.
In other words, the decidable sets form a Boolean algebra.

Proof.
Consider two decidable sets A, B ⊆ Nk. We have two register machines
MA and MB that decide membership.
Idea: Run both MA and MB on input x, returning output bA and bB

where bA, bB ∈ {0, 1}.

For intersection return min(bA, bB),
for union return max(bA, bB),
for the complement of A return 1 − bA.

2

Even Better: Effective Boolean Algebra 28

As usual, we have used elementary arithmetic to express logical
operations.

conjunction min(bA, bB) bA ∧ bB

disjunction max(bA, bB) bA ∨ bB

negation 1 − bA ¬bA

But this means that the Boolean algebra of decidable sets is effective: we
can represent the elements by natural numbers (recall the index
machinery), and the corresponding algebraic operations are then
computable (even primitive recursive).

We have a computable structure, not just an abstract algebra.

How Bad Can It Be? 29

Here is an innocent question:

Is every decision problem A ⊆ N decidable?

If this were true we could construct, for any A ⊆ N, a register machine
MA that, on input any number x ∈ N, halts with output charA(x).

Unfortunately, the answer is NO.

Here is a cardinality argument due to Cantor that shows that there are
lots of undecidable problems.

Counting 30

Theorem
There are undecidable decision problems.

Proof.
There are uncountably many subsets of N (to be precise: 2ℵ0).
But there are only countably many register machines (recall our coding
machinery).
Hence uncountably many problems A ⊆ N are not decidable.

2

Note that this argument, like others in set theory, leaves a bitter
after-taste: it does not produce any concrete undecidable problem. As
usual, there is a more constructive approach.

Going Concrete 31

Fortunately, our study of clones of computable functions points us in the
right direction when it comes to finding a concrete undecidable problem.

Recall our observation that the eval operator for computable functions is
necessarily partial: sometimes eval(e, x) must be undefined, otherwise we
are faced with a contradiction.

This opens the door for a decision problem.

Halting 32

Problem: Halting
Instance: Index e ∈ N.
Question: Does register machine Me halt on input e?

A slightly more precise way to express this would be to fix a universal
register machine U and to ask whether U on input program e and data e
halts:

U(e, e) ↓

The choice of the URM is entirely arbitrary, but will not affect the
decidability status of Halting.

Other Halting 33

It may seem more natural to consider the following version:

Problem: Full Halting
Instance: Index e ∈ N, an argument x ∈ N.
Question: Does register machine Me halt on input x?

As we will see, there is essentially no difference between the two versions,
and the first one is slightly more elegant.

Yet Other Halting 34

We can also get rid of the input altogether: the machine can start with a
precomputation that produces the input for the main computation.

Problem: Pure Halting
Instance: Index e ∈ N.
Question: Does register machine Me halt?

In this case, all registers are zeroed out before the computation starts.
Again, this is essentially the same as the other two versions. Arguably,
this is the most elegant variant.

Halting is Undecidable 35

A standard diagonalization argument shows that Halting cannot be
solved by a register machine.

Theorem
The Halting Problem is undecidable.

And, of course, we could do this in any model of computation, there
always is a universal “machine.”

Proof, Informal 36

Assume Halting is decidable. Then the following program

// impossible function

if(halt(z,z))
return eval(z,z) + 42;

else
return 0;

produces a contradiction.

Here halt(z,z) is the halting tester that exists by assumption, and
eval(z,z) is the universal RM: run Mz on input z.

Proof, Formal 37

Suppose Halting (version 1) is decidable.

Then we can define a function g by cases:

g(z) ≃

{
{z}(z) + 1 if {z}(z) ↓,
0 otherwise.

This function g is computable and even total. Hence, g has some index
e, which promptly produces a contradiction: g(e) = g(e) + 1.

Diagonalization 38

Diagonalization was invented by Cantor in
the context of set-theory to establish the
uncountability of the reals.

It is rather surprising that this tool also
turns out to be of central importance in the
computational universe.

Alas . . . 39

Diagonalization always leaves a bad aftertaste—one has the desired
object, but the construction is oddly elusive, and feels insufficiently
“concrete.”

Can one make the problem with Halting a little more tangible?

The Busy Beaver problem is directly connected to Halting: if we could
filter out all machines of a certain size that fail to halt, then we could
easily determine a champion among the remaining machines (in principle,
as we have seen, even for Turing machines with 6 states this is entirely
impossible in any physical sense).

A Real Math Problem 40

Arguably the most important, longstanding open problem in math is the
Riemann Hypothesis.

In its original form, RH looks like a solid chunk of complex analysis. You
start with the Riemann zeta function

ζ(s) =
∑
n≥1

1
ns

where s ∈ C, Re(s) > 1.

The condition Re(s) > 1 is needed to ensure convergence of the series
(think about s = 1).

http://www.claymath.org/millennium-problems/

Better Riemann 41

Using a technique known as analytic continuation, one can then extend ζ
to a function of type C → C with a pole at s = 1.

The reason ζ is so hugely important is that it is closely connected to
prime numbers, a fact already known to Euler.

ζ(s) =
∏

p

1
1 − p−s

where the product is over all primes.

A better understanding of ζ would have implications for the distribution
of primes. A more general form of RH implies that a particular primality
test runs in polynomial time (G. Miller).

Visualization 42

Since ζ is a complex function, it is rather hard to draw.

The modulus of ζ(s) for 0 ≤ Re(s) ≤ 1 and 0 ≤ Im(s) ≤ 50.

Roots 43

One can show that ζ(−2k) = 0 for all positive integers k (trivial zeros).

Alas, there are other, non-real roots that are much harder to understand.
Here is the big conjecture, proposed by Bernhard Riemann in 1859:

All non-real roots s have the property Re(s) = 1/2.

Note that this statement seems to require considerable horse-power: first
we need to define the analytic extension of a power series, then we want
to argue about some of roots of the resulting function.

Complex Roots 44

10 20 30 40 50

-2

-1

1

2

3

Complex and real parts of ζ(1/2 + i t) for 0 ≤ t ≤ 50.

The Computability Sledgehammer 45

So far, we are dealing with complex analysis. The next step is to reduce
all this complicated material to computation.

A formula of arithmetic is said to be Π1 if it can be written down by
using just one universal quantifier over N, plus bounded quantifiers,
propositional logic and standard arithmetic.

Θ ≡ ∀ n ϕ(n)

where ϕ is a formula of basic arithmetic. The relation ϕ(n) is in
particular primitive recursive and easy to check.

But checking Θ itself is more problematic: on the face of it, we have to
perform an infinite computation, we have try out all possible values of n.

It’s Π1 46

Here is the big surprise: the Riemann Hypothesis is Π1.

This may sound patently wrong, but can be shown with enough effort:
let Hn =

∑
k≤n 1/k be the nth harmonic number, and σ(n) the divisor

function (total sum of all divisors of n). These are all primitive recursive.

The RH is equivalent to: for all n,

σ(n) ≤ Hn + eHn log Hn

As written, this looks like real arithmetic involving e and log. In the
actual argument, everything has to be rephrased in terms of rational
numbers, and one needs to be very careful with error estimates.

Example: n = 40 47

The Riemann Register Machine 48

Based on this inequality, one can now construct a register machine M
that runs through a (potentially infinite) loop and tries to check the
inequality for all n.

If M finds a counterexample, it stops and returns 42. Otherwise M runs
forever.

Claim: M halts iff the Riemann Hypothesis is false.

There even are estimates on how large M would need to be (though
existing work uses Turing machines rather than register machines; less
than 10, 000 states).

Pushing Things 49

Similarly we can design a register machine Z that systematically
enumerates all first-order logic theorems provable in Zermelo-Fraenkel
with Choice. This works since the axioms of ZFC are easily decidable.

Now suppose Z is set up to halt when it finds a proof of ∅ = {∅},
otherwise it runs forever.

By Gödel’s incompleteness theorem, and assuming that ZFC is
consistent, we cannot prove in ZFC that Z never halts, nor can we prove
that it halts.

So ZFC is too weak to say anything about the Halting behavior of Z.

Halting is seriously hard.

1 ∗ Solving Problems

2 Decidability

3 Semidecidability

4 Diophantine Equations

The Next Step 52

Decidability makes direct algorithmic sense, we are trying to test for
certain properties in a computational manner.

Alas, it turns out that there is a weaker property, called semidecidability,
that is very closely related to decidability, and that is arguably more
fundamental and ultimately more important.

Semidecidability 53

Here is a generalization of decidability:

Definition
A set A ⊆ Nk is semidecidable if there is a register machine that, on
input x, halts if x ∈ A, and fails to halt otherwise.

We will call this a semidecision procedure. As one might suspect, the
term semi-recursive is also used.

You can think of this as a broken decision algorithm: if the answer is Yes,
the algorithm works properly and stops after finitely many steps. But, if
the answer is No, it just keeps running forever, it never produces a result.

In Pictures 54

x

Yes

zip

A

Just to be clear: zip is not output, it just means “there is no output.”

Quoi? 55

Note that Halting is the critical natural example of a semidecidable
problem: we can determine convergence in finitely many steps, but
divergence takes forever. This is exactly the idea behind an unbounded
search: we find a witness in finitely many steps if there is one, but
otherwise we keep searching forever.

Here is the critical connection between decidability and semidecidability:

Lemma
A set is decidable iff the set and its complement are both semidecidable.

Proof 56

Clearly, A decidable implies that both A and A are semidecidable.

But the opposite direction is far from trivial: we have two semidecision
procedures A0 and A1, but we don’t know which one is going to halt. So
we cannot simply run, say, A0 first.

The way around this problem is to run both procedures in parallel on the
given input: we combine two computations into one, alternating steps.
We stop as soon as one of the sub-computations terminates.

Intuitive, this no surprise; every operating system does this. But it
actually is another fundamental property of computation: we can
interleave two computations into a single one.

Closure Properties 57

Lemma
The semidecidable sets are closed under intersection and union.

Proof.
For intersection we can simply run the two semidecision-procedures
sequentially.
But for union we again need to interleave two computations.

2

Note: We do not have closure under complement in general: Halting
and the last lemma prohibit that.

No Way Around It 58

A similar problem arises in complexity theory. For example, there seems
to be no reasonable way to express finite graphs as data structures, so
that a graph is Hamiltonian iff its data structure has some simple
property (the first byte is 0).

If we were to represent graphs by such magic data structures, a
substantial amount of computation would have to go into just creating
the data structures.

This is cheating, data structures are supposed to be canonical and
require no special care and feeding.

Universality 59

Pick any model of computation: Herbrand-Gödel, µ-recursive,
λ-definable, Turing-computable, register machine computable.

As Turing has shown, there is a universal “machine” U which can be used
to produce an effective enumeration ({e})e of all computable functions:

{e}(x) ≃ U(e, x)

Exercise
Figure out what the universal “machine” would look like in the other
models.

Kleene Normal Form 60

Here is a closer look at Halting and semidecidability. Suppose we have a
universal register machine U producing an enumeration {e} of all
computable functions.

We claim that there is a primitive recursive relation T (e, x, t) and a
primitive recursive function D (in fact, both T and D are quite
straightforward) such that

{e}(x) ↓ ⇐⇒ ∃ t T (e, x, t)

{e}(x) ≃ D(min
(

t | T (e, x, t)
)

T (e, x, t) essentially means: the computation of U on e and x terminates
after at most t steps.

Kleene’s T Predicate 61

T (e, x, t)

e the index of a register machine M

x an input argument for M

t a witness for a halting computation of M on input x.

The witness is usually the (sequence number that codes) a sequence of
configurations C0, C1, . . . , Cn of M .

Since we have an alleged witness, T is easily decidable and primitive
recursive.

Moreover, given the right t, it is easy to read off the output of the
computation (that’s D’s job).

Σ1 62

Recall the concept of a Π1 formula from above. Analogously, we can
define a Σ1 formula to have the form

Θ ≡ ∃ n ϕ(n)

Then {e}(x) ↓ is Σ1.

Similarly, for any computable function f , the statement f(x) ≃ y is Σ1:
we only need one unbounded search over a primitive recursive property.

Undecidability 63

The reason {e}(x) ≃ y is not decidable is that we cannot bound the
existential quantifier in {e}(x) ↓ ⇐⇒ ∃ t T (e, x, t) in a computable
manner.

Essentially, the only way we can find the right t is by running the
computation, there is no clever computational shortcut in general. This is
a perfect example of computational incompressibility.

Note that this is not a problem in any real algorithm: given some
particular input we can always compute ahead of time an upper bound on
the running time of the algorithm. Ditto for memory requirement.
Proof: check all the algorithms in 451.

Still Unhappy? 64

Halting may well seem like a somewhat unsatisfactory example of an
undecidable problem: it’s a perfect case of navel gazing. Certainly it does
not deal with a question at least superficially unrelated to computability.

Actually, anyone who has ever written a complicated program in a
language like C would have to admit that Halting is really quite natural.

But how about undecidable problems that are of independent interest?
Perhaps something that was studied even before the concept of an
algorithm was invented?

1 ∗ Solving Problems

2 Decidability

3 Semidecidability

4 Diophantine Equations

Warning: Treacherous Arithmetic 66

Basic arithmetic on the natural numbers may seem fairly straightforward;
tedious on occasion, but not truly complicated.

Wrong, wrong, wrong. Consider the numbers

n17 + 9 and (n+1)17 + 9

They turn out to be coprime up until we hit

8424432925592889329288197322308900672459420460792433

the first counterexample, about 8.42 × 1051.

Where the hell does this huge number come from?

Hilbert’s 10th Problem 67

Perhaps the most famous example of an undecidability result in
mathematics is Hilbert’s 10th problem (HTP), the insolubility of
Diophantine equations.
A Diophantine equation is a polynomial equation with integer
coefficients:

P (x1, x2, . . . , xn) = 0

The problem is to determine whether such an equation has an integral
solution.

Theorem (Y. Matiyasevic, 1970)
It is undecidable whether a Diophantine equation has a solution in the
integers.

Examples 68

Pythagorean triples: it is not hard to classify all the solutions of

x2 + y2 − z2 = 0

But tackling
xk + yk − zk = 0

for k > 2 was one of the central problems of number theory and it took
more than 350 years to show that solutions only exist for k = 1, 2.

The Proof 69

The proof of undecidability of Diophantine equations is way too
complicated to be presented here, but the main idea is a reduction using
very clever coding tricks:

Show that decidability of Hilbert’s 10th problem implies decid-
ability of the Halting problem.

More precisely, call a set A ⊆ Z Diophantine if there is a polynomial P
with coefficients over Z such that

a ∈ A ⇐⇒ ∃ x1, . . . , xn ∈ Z
(
P (a, x1, . . . , xn) = 0

)
.

This condition is rather unwieldy, it is usually fairly difficult to show that
a particular set is in fact Diophantine.

Diophantine Sets 70

We want to describe a ∈ Z with some particular property:

Even: a = 2x.

Non-zero: a x = (2y + 1)(3z − 1).

Non-negative: a = x2
1 + x2

2 + x2
3 + x2

4 (Lagrange’s theorem)

Similarly we can show closure under intersection (sum of squares) and
union (product). But note that complements don’t work in general.

Again: Semidecidability 71

It turns out that exactly the semidecidable sets are Diophantine. In
particular, the Halting Set is Diophantine, and so it must be undecidable
whether an integer polynomial has an integral solution.

It is clear that every Diophantine set is semidecidable: given a, we can
simply enumerate all possible x ∈ Zn in a systematic way, and compute
P (a, x).

If we ever hit 0, we stop; otherwise we run forever.

Surprisingly the opposite direction also holds, but this is much, much
harder to show.

Details 72

First M. Davis was able to show that every semidecidable set A has a
Davis normal form: there is a polynomial such that

a ∈ A ⇐⇒ ∃ z ∀ y < z ∃ x1, . . . , xn

(
P (a, x1, . . . , xn, y, z) = 0

)
.

Davis, Putnam and Robinson then managed to remove the offending
bounded universal quantifier at the cost of changing P to an exponential
polynomial (containing terms xy).

Lastly, Matiyasevic showed how to convert the exponential polynomial
into an ordinary one.

Bounding Roots 73

Note that if we could produce a computable bound on the size of a
possible root we could use brute-force search to determine whether one
exists (in principle, in reality we die an exponential death).

Consider a univariate polynomial p(x) = anxn + an−1xn−1 + . . . a0 of
degree n (so an ̸= 0).

By rearranging terms a bit and using the standard properties of
inequalities over the reals we find that for any root x

|x| ≤ n · amax

|an|
where amax = max(|an−1|, . . . , |a0|). Done by search.

Elliptic Curves 74

How about a simple elliptic curve, say, y2 = x3 + c? Here is −2 ≤ c ≤ 3.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Discrete Case 75

For real solutions, this scenario is trivial. But we are looking for integral
solutions, and then things get incredibly messy.

It is known that the least integral solution, if it exists, is bounded by

exp((1010|c|)10000)

So, in principle, this is decidable by brute force search.

In practice, nothing moves; even if we were to allow nondeterminism.
Elliptic curves turn out to be useful in cryptography.

Cubes 76

How about sums of three cubes?

x3 + y3 + z3 = c

Over Z, it is not known that this is decidable.

Worse, it may well be that c is the sum of 3 cubes iff c ̸= ±4 (mod 9).
But that’s an open problem.

Recent result, found by a big computer search:

33 = 88661289752875283 − 87784054428622393 − 27361114688070403

This just in . . . 77

Andrew Sutherland at MIT and Andrew Booker at U Bristol used over a
million hours of compute time on the Charity Engine to find

42 = −805387388120759743+804357581458175153+126021232973356313

Bounding Roots, II 78

So it would not be unreasonable to think that integer roots of
P (x1, . . . , xn) can be bounded by some rapidly growing but computable
function of n, the degree d of P , and the largest coefficient c.

Perhaps something insanely huge, using the Ackermann function:

A
(

n! |c|d, nnd+42
)

would work?

If not, try an even higher level of the Ackermann hierarchy or one of
Friedman’s monsters?

Bounding Roots is Hard 79

Alas, finding bounds even in very concrete cases turns out to be quite
difficult. For example, consider again the three cubes problem

x3 + y3 + z3 = 74.

The smallest solution is

x = −284650292555885
y = −66229832190556
z = 283450105697727

Even Fermat is Hard 80

For Fermat type problems xn + yn = zn we have a complete answer
thanks to Wiles. Note that the solutions (x, y, z) have the nice property
that (αx, αy, αz) is also a solution.

So we can rephrase this as solving xn + yn = 1 over the rationals.

This naturally leads to the question “How many rational points are there
on an algebraic curve?”, another brutally hard problem (see Falting’s
Theorem).

More Problems 81

Or try to find a positive solution for the seemingly innocuous Pell
equation:

x2 − 991y2 − 1 = 0.

Of course, x = 1, y = 0 is a trivial solution. The smallest positive
solution here is

x = 379516400906811930638014896080

y = 12055735790331359447442538767

The Sun God’s Herd 82

An old puzzle, supposedly due to Archimedes, about the size of the herd
of cattle owned by the sun god, comes down to solving a system of linear
equations and then the Pell equation

x2 − 410286423278424 y2 − 1 = 0.

In this case, the least positive solution has 103273 and 103265 decimal
digits.

Exercise (in futility)
Try to find a positive solution to 313(x3 + y3) = z3.
Or try x3 + y3 + z3 = 33.

Different Rings 83

Note that the choice of Z as ground ring is important here. We can ask
the same question for polynomial equations over other rings R (always
assuming that the coefficients have simple descriptions).

Z: undecidable

Q: major open problem

R: decidable

C: decidable

Decidability of Diophantine equations over the reals is a famous result by
A. Tarski from 1951, later improved by P. Cohen.

One Implication 84

It is true that an algorithm for HTP over Z would produce an algorithm
for HTP over Q.

Consider P (x) = 0 with x ∈ Q. This is equivalent to

∃ y, z ∈ Z
(
P (y/z) = 0 ∧ z1 . . . zk ̸= 0

)

Of course, this is exactly the wrong direction.

Exercise
Why does undecidability over Z not simply imply undecidability over Q?
What is the obstruction?

Hard Polynomials 85

Since we can encode arbitrary semidecidable sets as Diophantine
equations, we can in particular encode universal sets.
That means that there is a single polynomial with parameter a for which
the question

∃ x1, . . . , xn P (a, x1, . . . , xn) = 0

is already undecidable.

As one might suspect, there is a trade-off between the degree d of such a
polynomial and its number of variables n. Here are some known (d, n)
pairs that admit universal polynomials:

(4, 58), (8, 38), (12, 32), . . . , (4.6 1044, 11), (8.6 1044, 10), (1.6 1045, 9)

Jones, Sato, Wada, Wiens Polynomial 86

(k + 2)
(

1 − [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z]2−

[16(k + 1)3(k + 2)(n + 1)2 + 1 − f2]2 − [2n + p + q + z − e]2−
[e3(e + 2)(a + 1)2 + 1 − o2]2 − [(a2 − 1)y2 + 1 − x2]2−

[16r2y4(a2 − 1) + 1 − u2]2 − [n + l + v − y]2 − [(a2 − 1)l2 + 1 − m2]2−
[ai+k +1− l − i]2 − [((a+u2(u2 −a))2 −1)(n+4dy)2 +1− (x+cu)2]2−
[p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m]2 − [q + y(a − p − 1)+

s(2ap+2a−p2 −2p−2)−x]2 − [z +pl(a−p)+t(2ap−p2 −1)−pm]2
)

This polynomial P has 26 variables and degree 25. P (N26) ∩ N is the set
of prime numbers. Note the factor (k + 2) up front.

	* Solving Problems
	Decidability
	Semidecidability
	Diophantine Equations

