
CDM

Hypercomputation—A Rant

Klaus Sutner

Carnegie Mellon University
Fall 2023

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Tired of Computation? 2

Tired of computability, complexity, algorithms, average case analysis, efficiency,
non-computability, intractability?

No problem. There is now a small industry of people working in the brand-new
and exciting field of

HYPERCOMPUTATION

Just wait a little bit longer, and your desktop machine will be replaced by a
hypercomputer and will solve unsolvable problems on a routine basis. Merely
intractable problems are handled instantaneously.

Wurzelbrunft has already placed a pre-order on Amazon.

Even Books . . . 3

Computability 4

At present, the theory of computation falls into two major parts:

Classical Computability Turing/register machines, λ-calculus, decidability,
semidecidability, arithmetical hierarchy, degrees of unsolvability,
. . .

Complexity Theory Time and space classes, deterministic and nondetermin-
istic classes, circuits, P versus NP, randomness, probabilistic
classes, quantum computation . . .

Could this be all? Nah . . .

Going Hyper 5

Historical Hypercomputation

This area is known as Generalized Recursion Theory (GRT)
and has been studied extensively for almost a century, there
are lots of results, everything is fairly well understood.

Hysterical Hypercomputation

A more recent idea, unencumbered by any sort of results. It re-
lates to actual computability theory in about the way astrology
relates to astronomy.

Generalized Computation? 6

Recall my favorite quote from Stefan Banach:

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

Does this apply to computability?

Is there any reasonable way to generalize computability?

Is there any mileage one can get out of such generalizations?

Generalized Recursion Theory (GRT) 7

A good number of “theories of computation” on structures other than the
natural numbers have been developed: computation on ordinals, computation
on sets, computation on algebraic structures, computation on higher types and
so on.

There is even an axiomatization of computation:

J. E. Fenstad
General Recursion Theory: An Axiomatic Approach
Springer 1979

Unfortunately, the axiomatization by Fenstad feels a bit awkward and overly
technical (compared to, say, Hilbert’s axiomatization of geometry or
Zermelo-Fraenkel’s axiomatization of set theory), but overall it captures the
fundamental ideas behind computation fairly well.

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Aside: Bad Slides Coming 9

All the experts tell you to

keep text on slides to a minimum

under no circumstances read your own slides

use simple, stripped down graphics

do not use multiple fonts, loud backgrounds, garish colors, useless pic-
tures, cartoons, watermarks, anything distracting . . .

In general, I try to adhere to these principles† , but there will be too much text
on the following slides, and I will read some of it aloud. Sorry.

†Except for item 1, I can’t stand slides that are meaningless without a video.

Fashionable Nonsense 10

There are some areas of intellectual discourse where the experts can engage in
furious debates about the basic usefulness of certain theories, even beyond the
question of whether the theories are correct. Psychology, philosophy, literature,
history, economics and so forth come to mind.

However, in the hard sciences, these debates are quite rare and tend to focus
on particular technical issues (is string theory falsifiable, is it still physics?).

Amazingly, we now have an example of an entirely meaningless “theory” in
mathematics, or at least area close thereto.

Jack Copeland and Diane Proudfoot 11

Hypercomputation 12

The term hypercomputation gained notoriety after a 1999 paper by Copeland
and Proudfoot in the Scientific American titled

Alan Turing’s Forgotten Ideas in Computer Science

The article makes the most astounding claim that Turing “anticipated
hypercomputation” in his technical work.

A clever PR trick, of course. Hiding behind one of the greats is usually a good
idea (in particular if the person is dead and cannot complain).

Oracles 13

To support this conclusion, the authors misinterpret Turing’s concept of an
oracle machine in patently absurd ways. There is a nice picture of an oracle
machine in the paper:

The idea is that the big, ominous, gray box (the oracle) has access to a copy of
the Halting set, living in the pleasant, smaller, blue box; here called τ ∈ 2ω.

Copeland and Proudfoot 14

The authors comment:

Obviously, without τ the oracle would be useless, and finding
some physical variable in nature that takes this exact value might
very well be impossible. So the search is on for some practicable
way of implementing an oracle. If such a means were found, the
impact on the field of computer science could be enormous.

No doubt, the impact on math would be enormous. For example, we could
solve Diophantine equations and get answers to all kinds of open problems like
the Riemann hypothesis.

Math departments would love such a machine.

The End of the World 15

But the impact would be much broader. Let n = pq be the product of two
large primes, so RSA depends on factoring n being hard.

Let’s use a hypercomputer. For 2 ≤ a ≤ b ≤ n, construct a Turing machine
Ma,b that halts if there is some factor of n in the interval [a, b].

Using the Copeland-Proudfoot machine, we could do a binary search† to find a
factor.

Similar tricks would destroy just about all the cryptographic schemes relevant
today (I suppose quantum-generated one-time pads would still work, if only you
can get the pad safely to Bob).

So, the world financial system would implode immediately, followed by the
whole world economy, and soon after we’d be back in the stone age.

†Not that it matters, we don’t know how fast the machine is.

A Minor Issue 16

Alas, there is a small problem: storing an infinite amount of information in a
finite physical system seems quite patently impossible.

And even if we somehow could store an infinite amount of information, we
could not retrieve it—perhaps the authors are unaware of Heisenberg?

We would have to fire photons of arbitrarily high energy at our blue box to get
at distant bits, which would destroy the device immediately.

A Misunderstanding? 17

Maybe Copeland did not really mean to have an infinite oracle, maybe he was
only hoping to get the first, say, billion bits.

That would still have huge impact on math, depending on coding details we
could immediately resolve open problems such as the Riemann hypothesis or
the Goldbach conjecture, the consistency of Dedekind-Peano arithmetic, and so
on. Cryptography might not be affected much.

Implementing a bit-string of length 109 would be entirely trivial, if only
someone could provide the actual bits. Alas, that’s exactly where things fall
apart; any finite oracle exists abstractly, but we don’t know how to construct it.
If someone gave it to us, we would not recognize it.

Copeland versus Math 18

Many objections could be raised to this proposal. The most rele-
vant for us is that abstract mathematical entities are not the right
kind of entity to implement a computation. Time and change
are essential to implementing a computation: computation is a
process that unfolds through time, during which the hardware
undergoes a series of changes (flip-flops flip, neurons fire and
go quiet, plastic counters appear and disappear on a Go board,
and so on). Abstract mathematical objects exist timelessly and
unchangingly. What plays the role of time and change for this
hardware? How could these Platonic objects change over time
to implement distinct computational steps? And how could one
step “give rise” to the next if there is no time or change? Even
granted abstract mathematical objects exist, they do not seem
the right sort of things to implement a computation.

Come Again? 19

First, let’s ignore the absurdly simplistic Platonic model imputed by these lines.
At the very least, all logicians and philosophers of mathematics would laugh at
this.

Second, the authors seem to be unaware that the many models of computation
developed over the last century are all perfectly capable of being expressed
precisely in terms of mathematical objects. In fact, that is their very purpose.

Without meaning to beat a dead horse, modeling temporal change is one of the
central ideas in calculus. Have differential equations not made it all the way
down to New Zealand? Are they upside-down? Just asking.

Is Hypercomputation Real? 20

A search for “hypercomputation” generates 80,500 hits on Google, but
“Kardashians” produces a healthy 557,000,000 hits. Insufficient evidence for a
real thing.

Wikipedia
Hypercomputation or super-Turing computation refers to models
of computation that can provide outputs that are not Turing
computable. For example, a machine that could solve the halting
problem would be a hypercomputer; so too would one that can
correctly evaluate every statement in Peano arithmetic.

Sure, many of the models considered in generalized recursion theory in the last
80 years are hypercomputers in this sense. So what?

Toby Ord 21

The next quote is taken from a
2006 article titled “The many
forms of hypercomputation” by
Toby Ord, an Oxford educated
thinker and one of Copeland’s
acolytes.

In the interest of fairness, Ord
is really a moral philosopher
and quite impressive as such,
see Giving What We Can.

http://www.amirrorclear.net/academic/research-topics/other-topics/hypercomputation.html
https://en.wikipedia.org/wiki/Giving_What_We_Can

The Argument from Hyper 22

The new machines go beyond Turing’s attempts to formalize the
rote calculations of a human clerk and instead involve operations
which may not even be physically possible. This difference in fla-
vor is reflected in the terminology: they are hypermachines and
perform hypercomputation. Can they be really said to “com-
pute” in a way that accords with our pre-theoretic conception?
It is not clear, but that is no problem: they hypercompute. Hy-
percomputation is thus a species of a more general notion of
computation which differs from classical Turing computation in
a manner that is difficult to specify precisely, yet often easy to
see in practice.

Perhaps, but what is the point? This is exactly what GRT was created for.
What are the new results or insights obtained from this approach?

Ord Hedges 23

Let us suppose, however, that hypercomputation does turn out to be
physically impossible–what then? Would this make the study of hy-
percomputation irrelevant? No. Just as non-Euclidean geometry would
have mathematical relevance even if physical space was Euclidean, so too
for hypercomputation. Perhaps, we will find certain theorems regarding
the special case of classical computation easier to prove as corollaries to
more general results in hypercomputation. Perhaps our comprehension
of the more general computation will show us patterns that will guide us
in conjectures about the classical case.

Again, that’s old hat, GRT has done exactly that. Absolutely nothing new
here.

Also note the evolution on the issue of implementability, apparently the oracles
are still at large.

Ord Halts 24

Thus the claims that such problems are “undecidable” or “unsolvable”
are misleading. As far as we know, in 100 years time these problems
might be routinely solved using hypermachines. Mathematicians may
type arbitrary Diophantine equations into their computers and have them
solved. Programmers may have the termination properties of their pro-
grams checked by some special software. We cannot rule out such pos-
sibilities with mathematical reasoning alone. Indeed, even the truth or
otherwise of the Church-Turing Thesis has no bearing on these possibil-
ities. The solvability of such problems is a matter for physics and not
mathematics.

So now implementability is critical again, we actually want to build and run our
hypermachines.

And undecidability is a matter of physics, not math. In Ord’s defense, others
have come up with similar claims (Landauer, Deutsch).

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Turing Machines with Infinite Computations 26

Halting Turing machines perform finite computations and produce finite
output, no problem. But remember the characterization of semidecidable sets
A as being exactly the recursively enumerable sets: there is a computable
function with range A.

A nice way of thinking about this is to set up a Turing machine with a special
output tape. The machine runs an “infinite amount of time” and writes the
characteristic function of A on the output tape (alternatively, it could write the
elements of A on the tape). For example, the Halting set could be produced
this way (dovetailing).

This is perfectly fine intuitively, we just have to wait a bit longer for the result.
Of course, ultimately we need to figure out a precise way of defining “infinite
amount of time.”

Example: Zeno Machines 27

Here is one pseudo-physical approach to organize an infinite computation: find
a way to speed up the computation of a Turing machine. The first step takes
one second, the second 1/2 a second, the nth takes 2n−1 seconds.

The whole infinite computation takes a mere 2 seconds.

Of course, this is physical nonsense, but everyone would agree that, given a
better universe, we could produce the Halting set in just 2 seconds.

Getting Serious 28

Technically, we need two main ingredients to formalize our idea:

The use of transfinite ordinals rather than just natural numbers to count
steps in a computation.
A mechanism to preserve information when a computation reaches a limit
stage.

Of course, we wind up with a model of computation that is eminently
unrealizable, we cannot build such a device within the framework of physics (in
stark contrast to Turing machines). Still, it turns out that it fits in nicely with
other ideas from generalized recursion theory, and a number of interesting
results can be obtained this way.

ω (omega) 29

It is easy to add another step to any computation, the real problem is to deal
with limit stages when infinitely steps have already been performed. Here is the
basic idea.

We can associate the steps of an ordinary Turing machine with the natural
numbers:

0, 1, 2, . . . , n, n+1, . . . |

The notation . . . | is meant to indicate infinitely many steps, as opposed to the
first . . ., which stands for finitely many steps†. We write ω for all these
infinitely many steps.

The idea is that a machine, after running through all the finite steps n, arrives
at the (first) infinite level ω. The machine goes into a trance along the way,
and wakes up at level ω.

†The ellipsis is one of the most consistently abused symbols in all of math.

. . . and Beyond . . . 30

So suppose our machine has reached level ω. Nothing can stop us from taking
another step, leading to level ω + 1. And then to ω + 2, . . . , ω + n, and so on.
If we keep going, we finally wind up at

0, 1, 2, . . . , n, . . . | ω, ω + 1, ω + 2, . . . , ω + n, . . . |

which we express as ω + ω = ω · 2. So these are two infinite blocks, one after
the other.

You guessed it, we can also get ω + ω + ω = ω · 3. In fact, we can get

ω, ω · 2, ω · 3, . . . , ω · n, . . . |

We denote this level by ω · ω = ω2: ω many blocks of size ω each.

. . . To Infinity 31

In a similar way we can get to higher powers ωk and ultimately to ωω.

Moving right along, we get ωωω

and so on.

Nothing can stop us now, we get to level

ε0 = ωωω
. . .

So this is a stack of ω many ωs all exponentiated somehow.

We’ll stop here to avoid injury to malleable young minds. But rest assured, one
can keep on going on, and on, and on . . . |

Aside: Induction up to ε0 is needed to prove the consistency of
Dedekind-Peano arithmetic, your favorite system from 15-151.

Seriously? 32

This may all sound very alluring, but does it actually hold water?

In particular, is there are way to formalize these ordinals in, say,
Zermelo-Fraenkel set theory so that we can actually prove theorems about
them?

No problem, this is one of the many accomplishments of von Neumann. He
gave a very concise and clean definition of ordinals as sets. And he explained
how one can use transfinite recursion to define all the required arithmetic
operations (addition, multiplication, exponentiation, . . .). Plus, they can be
used to define cardinal numbers—as opposed to the customary wishy-washy
about injections and bijections.

Infinite Time Turing Machines (ITTM) 33

Let’s just take for granted that this transfinite level scheme can actually be
formalized. The key questions now is: how can we make sense of the
computation of a Turing machine at stage ω? Or any other limit stage for that
matter?

Here is a useful model developed by J. Kidder, J. Hamkins and others. We use
a Turing machine with a one-way infinite tape that is subdivided into three
tracks:

input
scratch
output

u0 u1 . . . un . . .

x0 x1 . . . xn . . .

v0 v1 . . . vn . . .

We can safely assume that the alphabet is 23, so each track contains a word in
2ω. We have a finite state control and a read/write head, as usual.

Limit Stages 34

Now suppose the Turing machine has already performed all steps n < ω. We
define the configuration at time ω as follows:

The machine is in a special state qlim.

The head is in position 0.

The content of a subcell such as xi is the limsup of its contents at times
n < ω.

The definition for an arbitrary limit level λ is exactly the same. Thus, the entry
in a subcell is 1 at time λ iff

∀ β < λ ∃ α
(
β < α < λ ∧ symbol at time α is 1

)
Think of a light blinking infinitely (actually, cofinally) often before time λ.

Preserving Information 35

Note that the special limit state qlim is the same for each transfinite limit time
λ; there is no special qω, qω+ω, qω·ω and so on. So the state set of a ITTM is
still finite.

Thus, the only way to preserve information at a limit time is via tape subcells;
state and head position are always exactly the same when we wake up on the
other side.

For example, we can have the subcell x0 on the work tape hold a 1 at a limit
time λ iff something happened over and over arbitrarily close to λ.

An ordinary Turing machine simply cannot do this, it dies at level ω and never
wakes up again.

Example: Halting 36

Consider the Halting problem for ordinary Turing machines: given an index e
we want to know if {e} halts on the empty tape.

This can be handled by an ITTM M: e is written on the input track. M then
simulates the ordinary computation of {e} on empty tape using the scratch
track but not x0.

If {e}() halts after finitely many steps, M also halts and accepts.

Otherwise we reach the limit stage ω. M wakes up in state qlim, takes one
more step, and halts and rejects at time ω + 1.

Example: All of Halting 37

We can do better than this: we can dovetail all computations {e}(), e ∈ N,
and write a 1 in position e of the output track whenever the corresponding
computation converges.

At time ω, the (characteristic function of the) Halting set will appear on the
output track.

More generally, we can use ITTMs to compute functions

f : 2ω −→ 2ω

essentially functions on the reals.

Example: INF 38

Halting is near the bottom level of the arithmetical hierarchy, but we can also
handle higher levels via ITTMs.

For example, recall INF, the collection of all Turing machines that halt on
infinitely many inputs:

INF = { e ∈ N | {e} converges on infinitely many inputs }

Intuitively, this is clearly harder than plain Halting.

In fact, we have seen INF is Π2-complete in the arithmetical hierarchy. Pretty
hopelessly hopeless . . .

No Problem 39

Lemma
We can decide membership in INF by an ITTM.

Again, ITTMs are not physically realizable. There is nothing wrong with the
fact that they can decide problems that are highly undecidable by perfectly
realizable ordinary Turing machines.

Plus, they are a rather neat model and require far fewer technicalities than
other models in generalized computability. Far, far fewer.

Proof 40

As before, e is written on the input track.

Then ITTM M runs the following program:

foreach n ∈ N do
if {e}(n) ↓
then flash x0; // turn on and then off right away

if x0 = 1 // we are at a limit stage
then accept
else reject

So M flashes a light whenever it finds a convergence. Infinitely many flashes
means we are in INF.

Quoi? 41

If M finds that {e} converges on n, it turns bit x0 on, and then off again at
the next step. Of course, M will not use subcell x0 for the simulation, just for
messaging.

If the machine {e} diverges on n, we just spend ω many steps finding out,
without ever flashing x0.

At the limit stage corresponding to completion of the main loop, subcell x0 will
hold a 1 iff there were infinitely many good arguments n.

The check for each n may require up to ω steps, so the total running time is
between ω and ω2.

Are We Done? 42

Not at all, we can similarly show that we can climb up the arithmetical
hierarchy.

Lemma
For any n, all problems in Σn can be decided by a ITTM.

In fact, we can even handle all levels in the arithmetical hierarchy at once:

Lemma
Arithmetical truth can be decided by a ITTM.

Actually, ITTMs are even more powerful than this.

The Analytical Hierarchy 43

Recall that the arithmetical hierarchy is obtained by placing alternating blocks
of quantifiers ranging over N in front of a decidable relation.

Analogously, we can construct the analytical hierarchy by using alternating
blocks of quantifiers that range over subsets of N. Without going into technical
details, it is not terribly surprising that this should produce far more
complicated sets than our old arithmetical hierarchy.

Here is an example: suppose we have an order relation ≺. If we want to assert
that ≺ is a well-order we have to say something along the lines of

∀ X
(
∃ x (x ∈ X) ⇒ ∃ u (u ∈ X ∧ ∀ v (v ∈ X ⇒ ¬(v ≺ u)))

)
Less formal but easier to read:

∀ X ̸= ∅ ∃ u ∈ X ∀ v ∈ X (v ̸≺ u)

Pi-1-1 44

In terms of the analytical hierarchy, this shows that being a well-order is a
property expressed at level Π1

1 (note the superscript 1).

In fact, it is well-known that checking whether a given order on N is well-order
is Π1

1 -complete. Incidentally, the whole arithmetical hierarchy is properly
contained in Π1

1 . In fact, it fits into ∆1
1 = Π1

1 ∩ Σ1
1 , the place in the analytical

hierarchy where arithmetic truth lives.

One might wonder whether this sort of complexity class makes any sense
whatsoever. The arithmetical hierarchy is bad enough, why bother with these
monsters? One reason is that quantification over sets is essential for analysis,
we cannot formalize the reals, continuity, differentiability, integrability and so
without such high-powered tools.

Well-Orders 45

We can code a well-order ≺ on N as a word W ∈ 2ω, really just an infinite
bit-vector:

x ≺ y ⇐⇒ W (⟨x, y⟩) = 1

where ⟨., .⟩ : N × N → N is a standard coding function. We can write W on
the input tape of a ITTM; since the machine can have transfinite running time,
there is no problem in reading all this information.

Theorem
It is ITTM-decidable whether W ∈ 2ω codes a well-order.

As it turns out, any ITTM-decidable set is in ∆1
2, so this is close to the limit of

the computational power of ITTMs.

How Long Does It Take? 46

Here is a nice example of a theorem for ITTMs that exhibits a new type of
behavior. This is the kind of result that makes GRT worthwhile.

An ordinary Turing machine can halt, enter a loop or diverge (run through an
ω-sequence of non-repeating configurations). By contrast, an ITTM either
halts or enters a loop of sorts: even if it “diverges” for a while, it will ultimately
end up in a limit cycle. How far do we have to go before the computation ends
in this sense?

Theorem
Every computation of a ITTM either halts or enters a loop after countably
many steps.

So we do not have to run the machine ℵ1 or ℵ17 many steps, some α < ℵ1 will
do. Small consolation, but at least we are not totally out to lunch.

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Wolfgang Pauli 48

Das ist nicht einmal falsch.

This is not even wrong.

Hypercomputation and Physics 49

It seems clear that hypercomputationists need to cling to physics for dear life:
without implementability they are adrift in generalized recursion theory, a field
that they apparently are unaware of or do not understand.

To get any traction, one has to ask whether the physics of our actual universe
somehow supports hypercomputation. Of course, this is an exceedingly difficult
question: Hilbert’s problem #6, when expanded to all of physics, is still
unanswered: no one knows how to axiomatize physics in its entirety.

The investigations on the foundations of geometry suggest the
problem: To treat in the same manner, by means of axioms,
those physical sciences in which already today mathematics plays
an important part; in the first rank are the theory of probabilities
and mechanics.

Theory of Everything 50

Ideally we could build an axiomatization Γ of physics, in some sufficiently
powerful logic. So the real world would be a structure that models Γ (and
perhaps is not uniquely determined). Γ would be a Theory of Everything.

Then, with a bit of effort, one might be able to show that

Γ ⊢ ∃ M
(
device M solves Halting

)
Or, we might be able to prove the negation. Maybe Γ could be loop quantum
gravity, or string theory, or some such.

Of course, there is also the vexing problem of validity: is our ToE actually
correct? Obviously there is no such thing as a correctness proof in the strict
mathematical sense, just empirical observations.

Not Fair 51

OK, so playing with physical theories, even partial or inaccurate ones, is not all
useless.

It is an excellent exercise to fix some particular theory Γ of physics (not a ToE)
and try to show that in Γ it is possible to “construct a device” that solves the
Halting problem.

For example, assume Newtonian physics: gravitating point masses, no relativity
theory, no quantum theory. It’s a nice exercise; alas, it has no bearing on
implementability, none whatsoever.

Exercise
Concoct a hypercomputer in your favorite fragment of physics.

So What’s The Difference? 52

Copeland’s oracle computer can “solve” the Halting problem as can ITTMs.
Why should one care about one but not the other?

Because ITTMs produce an interesting theory of computation that has close
connections to other areas of generalized recursion theory, along the lines
discussed above. The proof techniques are interesting and quite complicated.

Copeland’s machines, on the other hand, are utterly useless, just a shallow PR
stunt that is of no importance anywhere.

The Resistance: Andrew Hodges 53

Hodges has written the definitive biography of Turing (incidentally, very well
worth reading). He found it necessary to comment on the Copeland/Proudfoot
article, an unusual step in the genteel world of math.

I was appalled that this hare-brained idea should be associated
with Alan Turing as his ’lost brainstorm.’ Scientific American
said that this ’hypercomputation’ is a ’hot idea’ which Alan Tur-
ing had ’anticipated in detail.’ I suspect many people with a
physical or engineering background took it, on reading this non-
sense, that Turing had come up with this ridiculous idea because
he was an impractical logician without understanding of reality.
What a slur on his reputation!

Here is the link: Hodges on Copeland/Proudfoot

http://www.turing.org.uk/publications/sciam.html

The Resistance: Martin Davis 54

In 2006, Martin Davis could not stand it any longer, and published a paper

The Myth of Hypercomputation

In the paper, he very sweetly demolishes, annihilates and eviscerates the idea of
“hypercomputation.” Again, this kind of direct and scathing criticism is highly
unusual; bad work is typically ignored, not openly criticized.

Needless to say, the Cult of Hypercomputation simply ignores Davis’s paper, as
well as all other criticism.

https://www.researchgate.net/publication/243784599_The_Myth_of_Hypercomputation

The Point 55

At this point, several areas of what used to be science have been invaded
by fashionable nonsense.

There is some amusement value in this, and it even may be welcome as a
sign of a more open, less dogmatic and hierarchical world. For example,
arXiv is a big step forward from the traditional publishing machine and
some blogs are absolutely great. The flip-side is viXra, an inexhaustible
source of garbage, and blogs that are simply lousy.

Democratizing science is great. But, it’s also dangerous, without any
control mechanism we get “alternative facts” instead of science.

Insanity 56

This drifting of figures and geometric figuring, this irruption
of dimensions and transcendental mathematics, leads to the
promised surrealist peaks of scientific theory, peaks that cul-
minate in Gödel’s theorem: the existential proof, a method that
mathematically proves the existence of an object without pro-
ducing the object.

Paul Virilio

Virilio is described as a “cultural theorist, urbanist, and aesthetic philosopher.”

	Generalized Computation
	The Cult of Hypercomputation
	Infinite Time Turing Machines
	The Death of Hypercomputation

