
CDM

Minimization of Finite State Machines

Klaus Sutner

Carnegie Mellon University
Fall 2023

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Moore’s Algorithm

State Complexity 2

Recall the definition of the state complexity st(L) of a recognizable language
L: the minimal number of states of any DFA accepting the language.

Our next goal is to show how to compute the state complexity of a language:
we will construct a corresponding DFA, starting from an arbitrary machine for
the language.

As it turns out, the automaton is unique, up to renaming of states. Thus, we
have a normal form for any recognizable language. This is fairly rare, usually
there are many canonical descriptions of an object.

But Why? 3

Humans are fairly good at constructing small DFAs that are already
minimal–one naturally tends to avoid “useless” states. Unfortunately, this little
reassuring fact does not help much:

Humans fail spectacularly when the machines get large, even a few dozen
states are tricky, thousands are not manageable.

One of the most interesting aspects of finite state machines is that they
can be generated and manipulated algorithmically. These algorithm typi-
cally do not produce minimal machines—and often not even deterministic
ones.

Redraw 4

Here is a DFA obtained by building the accessible part of the standard product
machine for the language {aa, bb}:

0

1

2

3

4

5

a

a

a, b

b

b

a, b

b

a

a, b

A Minimal Solution 5

However, the state complexity of {aa, bb} is only 5 (recall that state complexity
is defined in terms of DFAs, so we have to include the sink in the count).

0

1

2

3, 5 4

a
a

a, b

b
b

b

a

a, b

States 3 and 5 are merged into a single state (and the transitions rerouted
accordingly).

Minimal Automata 6

Definition
A DFA A is minimal if the state complexity of A is the same as the state
complexity of L(A).

In other words, there is no DFA equivalent to A with fewer states than A. As
already pointed out there are several potential problems with this definition:

The existence of a minimal DFA is guaranteed by the fact that N is well-
ordered, but there ought to be a more structural reason.

There might be several minimal DFAs for the same language.

Even if there is a unique minimal DFA, there might not be a good con-
nection between other DFAs and the minimal one.

Really Minimal? 7

How do we know that 5 states are necessary for {aa, bb}?

Need state q0 = δ(q0, ε).
Need state q1 = δ(q0, a) and q1 ̸= q0.
Need state q2 = δ(q0, b) and q2 ̸= q0, q1.
Need state q3 = δ(q0, aa) and q3 ̸= q0, q1, q2.
Need state q4 = δ(q0, aaa) and q4 ̸= q0, q1, q2, q3.

If any of these states were equal the machine would accept the wrong
language. So we need at least 5, but 5 also suffice.

Question:
What does {ε, a, b, aa, aaa} have to do with {aa, bb}?

Behavioral Equivalence 8

There is an interesting idea hiding in this argument: some states must be
distinct, so the machine cannot be too small.
To make this more precise we adopt the following definition.

Definition
Let A be a DFA. The behavior of a state p is the acceptance language of A
with initial state replaced by p. Two states are (behaviorally) equivalent if they
have the same behavior.

In symbols:

JpK = L(⟨Q, Σ, δ; p, F ⟩)
= { x ∈ Σ⋆ | δ(p, x) ∈ F }

So in a DFA the language accepted by the machine is simply Jq0K.

The Main Idea: State Merging 9

So suppose p and p′ have the same behavior. We can then collapse p and
p′ into just one state: to do this we have to redirect all the affected tran-
sitions to and from p and q.

This is easy for the incoming transitions.

But there is a little problem for the outgoing transitions: one has to merge
all equivalent states, not just a few.

Otherwise the merged states will have nondeterministic transitions em-
anating from them – and we do not want to deal with nondeterministic
machines here.

An Example 10

Language: a∗b.

J1K = J2K
J3K = J4K
J5K = J6K

1 2

3 4

5 6

a

b

a

b

a

b b

a

a, b a, b

Partial Merge 11

Merging only states 1 and 2
produces a nondeterministic
machine.

12

3 4

5 6

b

a

b

a

b b

a

a, b a, b

Another Step 12

Merging 1 and 2;
and 3 and 4.

12

34

5 6

b

a
b

a, b

a, b

a, b a, b

Complete Merge 13

A complete merge produces a DFA.

12

34

56

b

a

a, b

a, b

Reduced Machines 14

In the last machine, all states are inequivalent:

J12K = a∗b

J34K = ε

J56K = ∅

So no further state merging is possible.

Definition
A DFA is reduced if all its states are pairwise inequivalent.

Characterization 15

Our goal is to exploit the following theorem for algorithmic purposes.

Theorem
A DFA is minimal if, and only if, it is accessible and reduced.

Accessibility is computationally cheap. The merging part naturally comes in
two phases:

Determine the required partition of the state set.
Merge the blocks into single states of the new machine.

The second phase is easy, the first requires work, in particular if one needs fast
algorithms.

A Brutish Algorithm 16

To compute behavioral equivalence we can exploit the fact that we can check
DFAs for equivalence. In its most basic incarnation this method is O(n2).
There are

(
n
2

)
pairs of states to check, so the total damage is O(n4).

Here is a relatively cheap improvement: exploit the fact that the machines in
the equivalence test are essentially the same for all pairs. Consider the digraph
G whose vertices are all unordered pairs. Edges are

(p, q) a−→ (p · a, q · a)

Let E be the set of pairs in G that cannot reach a point in
{ (p, q) | p ∈ F ⊕ q ∈ F } in G. Then E is the behavioral equivalence relation,
given as a set of pairs.

This method is utterly simple, trivially correct, easy to implement and
quadratic time. As we will see, we can do much better than that.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Moore’s Algorithm

Merging and Algebra 18

The state merging approach is really algebraic in nature. Given some
complicated structure S, we can always try to simplify matters as follows:

Find an equivalence relation E on S,

that is compatible with the operations on S, and then

replace S by the quotient structure S/E.

In general one would like to make the quotient structure as small as possible,
so the equivalence relation should be as coarse as possible.

Operations on S extend naturally to operations on S/E: [x] ∗ [y] = [x ∗ y].

Congruences 19

The important point here is that not just any equivalence will do, rather we
need a congruence: an equivalence that coexists peacefully with the algebraic
operations under consideration.

E.g., if S has a binary operation ∗ then we need

x E x′, y E y′ implies x ∗ y E x′ ∗ y′

Thus, it might be a good idea to take a closer look at the algebra of languages,
whatever that may turn out to be.

Example
The classical example is modular arithmetic: the modm relation is a
congruence with respect to addition and multiplication.

Useful Congruences? 20

Are there any relevant congruences in our case?

The problem is: congruences on what? The most tempting apprach would be
to find a congruence on the state set. Alas, there really isn’t much of an
algebraic structure there.

Recall the {aa, bb} example from above? The main trick is to focus on the
input words {ε, a, b, aa, aaa} that separate the states.

Why would that help? Because the set of words Σ⋆ over alphabet Σ naturally
forms a monoid under concatenation. So we are looking for an equivalence
relation on Σ⋆ that coexists peacefully with concatenation.

Total Recall 21

Definition
Let E be an equivalence relation on A and B ⊆ A. Then E saturates B if B is
the union of equivalence classes of E.

In other words,

B =
⋃

x∈B

[x]E .

So (L, Σ⋆ − L) is coarsest equivalence relation that saturates L, but that is not
particularly interesting.

For our purposes, we need congruences on Σ⋆ that saturate L, and in
particular the coarsest such congruence.

Word Congruences 22

Definition
Given a language L ⊆ Σ⋆, its syntactic congruence is defined by

u ≡L v ⇐⇒ ∀ x, y ∈ Σ⋆
(
L(xuy) = L(xvy)

)
Given a DFA A, its transition congruence is defined by

u ≈A v ⇐⇒ δu = δv

Here we have conflated L with its characteristic function, and δu(p) = δ(p, u).

The first definition may look strange, but it turns out that syntactic
congruence is indeed the coarsest congruence that saturates L.

Example 23

Let L = a⋆b⋆. By substituting appropriate values for x and y in the definition
of ≡L we can “compute” the the equivalence classes of ≡L.

For example, for u = a we need x ∈ a⋆ and y ∈ a⋆b⋆ to have xuv ∈ L.

This is quite tedious because of the universal quantifier, but ultimately
produces the following classes:

[ε] = {ε} [a] = a+ [b] = b+ [ab] = a+b+ [ba] = Σ⋆ − L

We can turn these equivalence classes into an automaton. Sadly, the machine
is not minimal.

The Syntactic Congruence Automaton 24

ε

a

b

ab

ba

a

a

b

b

b

a

b

a

a, b

Works fine, but there is a DFA with just 3 states for this language.

Myhill-Nerode 25

Theorem (Myhill-Nerode 1958)
A language L is recognizable iff it is saturated by a congruence of finite index
(and in particular its syntactic congruence).

Proof.
Given an accessible DFA A for L, its transition congruence has finite index and
saturates L.

Of the opposite direction, let Q be the finite collection of equivalence classes of
the given congruence. Define a DFA by

δ([x], a) = [xa]
q0 = [ε]
F = { [x] | x ∈ L }

This works since ≡ is a congruence that saturates L.
2

Close, but no Cigar 26

As the example for a⋆b⋆ shows, we get a DFA that is not necessarily minimal,
even if we start with the coarsest congruence possible (the least number of
equivalence classes).

Incidentally, the transition congruence of the 5-state automaton from above is
exactly the syntactic congruence.

So what to we do? We need a better kind of “congruence,” called a right
congruence:

x ≡ y ⇒ ∀ z
(
x z ≡ y z

)
The coarsest such right congruence is called the Nerode congruence.

Come Again? 27

Definition
Given a DFA A, its right transition congruence is defined by

u θA v ⇐⇒ δ(q0, u) = δ(q0, v)

As far as A is concerned, u and v are indistinguishable. In particular, we
cannot find a separating string z such that L(uz) ̸= L(vz). One can check
that our construction of a DFA from a congruence really only requires a right
congruence, so we can construct a DFA of size the index of any right
congruence.

Here is the same idea again, but this time in terms of algebra, without
reference to automata.

Quotients 28

Suppose we have a right congruence θ that saturates L, and x θ y. Then
L(xz) = L(yz) for all z.

Definition
Let L ⊆ Σ⋆ be a language and x ∈ Σ⋆. The left quotient of L by x is

x−1 L = { y ∈ Σ⋆ | xy ∈ L }.

So we are simply removing a prefix x from all words in the language that start
with this prefix. If there is no such prefix we get an empty quotient.

Hence x θ y ⇐⇒ x−1 L = y−1 L is a right congruence that saturates L. Note
that θ is the kernel relation of the map x 7→ x−1L.

Rant on Notation 29

It is standard to write left quotients as

x−1 L

Here is the bad news: left quotients are actually a right action of Σ⋆ on L(Σ).

As a consequence, the first law of left quotients on the next slide looks
backward.

Algebra of Quotients 30

Lemma
Let a ∈ Σ, x, y ∈ Σ⋆ and L, K ⊆ Σ⋆. Then the following hold:

(xy)−1L = y−1x−1L,

x−1(L ⊙ K) = x−1L ⊙ x−1K where ⊙ is one of ∪, ∩ or −,

a−1(LK) = (a−1L)K ∪ χL a−1K,

a−1L⋆ = (a−1L) L⋆.

Here we have used the notation χL as a sort of characteristic function:

χL =
{

{ε} if ε ∈ L,
∅ otherwise.

In the context of languages, this behaves just like the ordinary characteristic
function in arithmetic.

Comments 31

Note that (xy)−1L = y−1x−1L and NOT x−1y−1L. As already mentioned,
the problem is that algebraically left quotients are a right action.

Quotients coexist peacefully with Boolean operations, we can just push the
quotients inside.

But for concatenation and Kleene star things are a bit more involved; the
lemma makes no claims about the general case where we divide by a word
rather than a single letter.

Exercise
Prove the last lemma.

Exercise
Generalize the rules for concatenation and Kleene star to words.

All Behaviors 32

The reason we are interested in quotients is that they are closely related to
behaviors of states in a DFA. More precisely, consider the following question:

What are the possible behaviors of states in an arbitrary DFA
for a fixed recognizable language?

One might think that the behaviors differ from machine to machine, but they
turn out to be the same, always.
To see why, first ignore the machines and consider the acceptance language
directly. Note that the language is the behavior of the initial state and thus the
same in any DFA.

We write Q(L) for the set of all quotients of a language L.

Quotients Example 1 33

Using the lemma (actually: just common sense), we can compute the quotients
of L = a∗b.

a−1 a∗b = a∗b

b−1 a∗b = ε

a−1 ε = ∅

b−1 ε = ∅

a−1 ∅ = ∅

b−1 ∅ = ∅

Thus Q(a∗b) consists of: a∗b, ε and ∅.

Quotients Example 1, Contd. 34

Note that these equations between quotients really determine the transitions of
a DFA whose states are the quotients.

a−1 a∗b = a∗b a∗b
a−→ a∗b

b−1 a∗b = ε a∗b
b−→ ε

a−1 ε = ∅ ε
a−→ ∅

b−1 ε = ∅ ε
b−→ ∅

a−1 ∅ = ∅ ∅ a−→ ∅

b−1 ∅ = ∅ ∅ b−→ ∅

Surprise, surprise, this is exactly the machine obtained by state-merging a while
ago.

Quotients Example 2 35

Sometimes it is important to keep track of the words that produce a particular
quotient. E.g., let L be the finite language {a, aab, bbb}.

This time Q(L) has size 6, with witnesses as follows:

x x−1 L

ε {a, aab, bbb}
a {ϵ, ab}
b {bb}
bb {b}

aab {ϵ}
ab ∅

Of course the witness x is not uniquely determined, for example
(abz)−1 L = (baz)−1 L = ∅ for any z. The table lists the length-lex minimal
witness in each case (which is the appropriate order for many algorithms).

Quotients Example 2.5 36

Moreover, there happens to be a “natural” DFA for L that has six states.

1

2

3

4 5

⊥

a

b

a

b
b

a

a

b

a, b

a, b

Could this be coincidence? Nah . . .

For example, δ(1, a) = 2 and J2K = {ε, ab}.
Corresponding to a−1 L = {ε, ab}.

Quotients Example 3 37

A larger example, L = L1 = a∗b∗ ∪ bab.

a−1L1 a∗b∗ L2
b−1L1 b∗ ∪ ab L3
a−1L2 L2
b−1L2 b∗ L4
a−1L3 b L5
b−1L3 L4
a−1L4 ∅ L6
b−1L4 L4
a−1L5 L6
b−1L5 ε L7

a−1L6/7 L6
b−1L6/7 L6

Exercise
Verify this table.

Quotients Example 4 38

An even larger example, L = L1 = a∗ba∗ ∪ b∗ab∗.

a−1L1 a∗ba∗ + b∗ L2 b−1L5 b∗ L8
b−1L1 b∗ab∗ + a∗ L3 a−1L6 b∗

a−1L2 a∗ba∗ L4 b−1L6 b∗ab∗

b−1L2 a∗ + b∗ L5 a−1L7 b∗

a−1L3 a∗ + b∗ b−1L7 ∅ L9
b−1L3 b∗ab∗ L6 a−1L8 ∅
a−1L4 a∗ba∗ b−1L8 b∗

b−1L4 a∗ L7 a−1L9 ∅
a−1L5 a∗ b−1L9 ∅

Exercise
Verify this table.

Quotients Example 5 39

Here is a very different example:

L = { aibi | i ≥ 0 } = {ε, ab, aabb, aaabbb, . . .}

This time there are infinitely many quotients.

(ak)−1L = { aibi+k | i ≥ 0 }

(akbl)−1L = {bk−l} 1 ≤ l ≤ k

(akbl)−1L = ∅ l > k

This is no coincidence: the language L is not recognizable.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Moore’s Algorithm

The Decomposition Lemma 41

Here is a simple observation about the relationship between languages (not just
recognizable) and their quotients.

Proposition
Let L ⊆ Σ⋆ be any language. Then

L = χL ∪
⋃

a∈Σ

a · (a−1 L)

Proof. Duh. 2

To convince a theorem prover one would need a precise definition of a word
and a language.

Exercise
Give a fastidious definition of words as functions w : [n] → Σ , n ∈ N, and use
this definition to give a formal proof of the Decomposition lemma.

The Crucial Insight 42

The Decomposition lemma is blindingly obvious.

But, from the right point of view, this little observation is quite helpful:

Think of the quotients as states.

Then the Decomposition lemma describes the transitions on these states:

L
a−→ a−1L

The χ term determines whether a state is final.

The Quotient Machine 43

In other words, we can build a DFA out of the quotients. To see how, suppose
Q = Q(L) is a finite list of all the quotients of some language L.

Construct a DFA

QL = ⟨Q, Σ, δ; q0, F ⟩

as follows:

δ(K, a) = a−1 K

q0 = L

F = { K ∈ Q | ε ∈ K }

Quotient Machine, contd. 44

This is perfectly in keeping with our definitions: the state set has to be finite,
but no one said the states couldn’t be complicated.

At any rate, in QL we have

δ(q0, x) = δ(L, x) = x−1 L.

But then

x ∈ L ⇐⇒ ε ∈ x−1 L ⇐⇒ δ(q0, x) ∈ F

so that QL duly accepts L.

Exercises 45

Exercise
We can implement the quotient computation for regular languages using DFAs
to represent the languages. What is the running time of the brute-force
implementation?

Exercise
A simple special case occurs when the initial language is finite: we can
compute quotients by word processing. What is the running time of this
method? How does it compare to other methods of computing the minimal
DFA for a finite language?

How About Other DFAs? 46

It is clear by now that there is a very close link between behaviors and
quotients of the acceptance language.
More precisely, it follows from the Decomposition lemma that in any DFA
whatsoever

Jδ(p, a)K = a−1 JpK

Note that it is critical here that DFAs are deterministic: there is only one path
in the diagram starting at the initial state labeled by any particular word x.
The theory of nondeterministic machines is much more complicated.

Quotients and Behaviors 47

Lemma
Let A be an arbitrary DFA, p a state and x ∈ Σ⋆. Then

Jδ(p, x)K = x−1 JpK

Proof. Straightforward induction on x. Use

(xa)−1L = a−1(x−1L)

2

Corollary
Suppose A is a DFA accepting L. Then for any word x:

Jδ(q0, x)K = x−1L

So What? 48

Hence all accessible states have as behavior one of the quotients of L.
Conversely, all quotients appear as the behavior of at least one state in any
DFA for L. This may not sound too impressive, but it has some very
interesting consequences.

Corollary
Every recognizable language has only finitely many left quotients.

Corollary
Every DFA accepting a recognizable language has at least as many states as
the number of quotients of the language.

Corollary
The quotient machine for a recognizable language has the lowest possible state
complexity.

State Complexity Revealed 49

So now we know that for any recognizable language L the quotient automaton
QL is minimal:

st(L) = # quotients of L

So, computing state complexity comes down to generating all quotients. We
know more or less how to do this algebraically, and we have a clumsy algorithm
based on manipulating DFAs.

Nice, but as we will see later, quotients are often also useful in describing and
analyzing finite state machines in general.

The Minimal Automaton 50

Theorem
A DFA for a recognizable language is minimal with respect to the number of
states if, and only if, it is accessible and reduced. Moreover, there is only one
such minimal DFA (up to isomorphism): the quotient automaton of the
language.

Proof.
Let L be the recognizable language in question and suppose that L has n
quotients.

First assume that A is an accessible and reduced DFA for L. Then every
quotient of L must appear exactly once as the behavior of a state in A, hence
st(A) = n.
By the corollary every DFA for L has at least n states, so A is minimal.

Proof, contd. 51

For the opposite direction, clearly any minimal automaton A for L must be
accessible.

From the corollary, st(A) ≥ n and we know how to construct a DFA with
exactly n states.

But A is minimal, so st(A) = n.

Again every quotient of L must appear exactly once as the behavior of a state:
thus A is reduced.

Uniqueness 52

It remains to show that all DFAs for L of size n are essentially the same as the
quotient machine QL – we can rename the states, but other than that the
machine is fixed.

To see this note we can define a bijection

f : Q → Q(L)
f(p) = JpK

from the states of A to the states of QL (the quotients of L).

This is a bijection since f is surjective and Q and Q(L) both have size n.

Compatibility 53

Moreover, this bijection is compatible with the transitions in the machines in
the sense that f(δ(p, a)) = δ(f(p), a). As a diagram:

p
a−−−−−→ δ(p, a)yf

yf

f(p) a−−−−−→ δ(f(p), a)

Lastly, f maps initial to initial, and final to final states.

Hence, the states in A are just “renamed” quotients: the machines A and QL

are isomorphic.
2

Machine Homomorphisms 54

The isomorphism from above leads to a more general question: is there a good
notion of a structure preserving map between two finite state machines? For
simplicity, let’s only consider DFAs.

Preserving Computations 55

It is clear that for a map f from machine A1 to machine A2 to be a
homomorphism it must preserve transitions:

p
a−→ q implies f(p) a−→ f(q)

Moreover, we require f(q10) = q20 and f(F1) = F2.
It follows immediately that L(A1) ⊆ L(A2).

However, we may still have L(A1) ̸= L(A2) (why?), so if we are interested in
equivalent machines we need to strengthen the conditions a bit:

f−1(F2) = F1

Homomorphisms that have this stronger property and are also surjective are
often called covers or covering maps.

Covers 56

Thus, a covering map can identify some states in the first machine while
preserving the language.
Needless to say, the classical example of a cover is the behavioral map:

f : Q → Q(L)
f(p) = JpK

Hence we have the following lemma which shows that an arbitrary DFA for a
given recognizable language is always an “inflated” version of the minimal DFA.
There always is a close connection between an arbitrary DFA and the minimal
automaton.

Lemma
Let L be a recognizable language and A an arbitrary accessible DFA for L.
Then there is covering map from A onto QL.

Example 57

There is a natural DFA A for all words x ∈ {a, b}⋆ such that x−3 = a. The
states in A are words over {a, b} of length at most 3 and the transitions are of
the form

δ(w, s) =
{

ws if |w| < 3,
w2w3s otherwise.

The initial state is ε and the final states are {aaa, aab, aba, abb}. The covering
map to the quotient automaton has the form

aaa 7→ aaa aa, baa 7→ baa
aab 7→ aab ab, bab 7→ bab
aba 7→ aba a, ba, bba 7→ bba
abb 7→ abb ε, b, bb, bbb 7→ bbb

Note that the transition diagram of the minimal automaton is a binary de
Bruijn graph (of order 3).

Application: Minimization 58

The covering map provides a way to minimize a DFA A: all we need to do is to
merge all the states that map to the same quotient: behavioral equivalence is
the kernel relation defined by the cover map.

But note that there is a bit of a vicious cycle: to compute the cover f directly
we need QL. If we have the latter there is no need to minimize A.

Nonetheless, covers indicate the right approach to efficient algorithms:

Start with any DFA A for L.
Remove inaccessible states from A.
Compute the behavioral equivalence relation for A.
Lastly, merge states with the same behavior.

But Why? 59

Why bother with quotient machines when one could simple explain, say,
Moore’s minimization algorithm and be done with it?

Because explaining a transformation from one object (or type) to another
purely in terms of an algorithm is usually a disaster: you know how to perform
the computation, but you have no idea what’s really going on. Try matrix
multiplication, for example.

The quotient concept explains why minimization works, the algorithms are just
ways of implementing the basic idea. As we will see, if one is content with
quadratic running time, then the implementation is quite straightforward.
Getting to log-linear is quite a challenge, though.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Moore’s Algorithm

Recall: Partitions versus Equivalence Relations 61

We will switch back and forth between two natural representations of the same
concept.

Equivalence Relations
A relation ρ ⊆ A×A that is reflexive, symmetric and transitive.

Partition
A collection B1, B2, . . . , Bk of pairwise disjoint, non-empty
subsets of A such that

⋃
Bi = A (the blocks of the partition).

As always, we need to worry about appropriate data structures and algorithms
that operate on these data structures.

Total Recall, I 62

Definition
Given a map f : A → B the kernel relation induced by f is the equivalence
relation

x Kf y ⇐⇒ f(x) = f(y).

Note that Kf is indeed an equivalence relation.

This may seem somewhat overly constrained, but in fact every equivalence
relation is a kernel relation for some appropriate function f : just let f(x) = [x].
The codomain here is P(A) which is not attractive computationally.

But, we can use a function f : A → A : just choose a fixed representative in
each class [x].

The Canonical Classifier 63

In general we need to assume the existence of such a choice function
axiomatically, but in any context relevant to us things are much simpler: we
can always assume that A carries some natural total order.
In fact, usually A = [n] and we can store f as a simple array: this requires only
O(n) space and equivalence testing is O(1) with very small constants.

Definition
The canonical classifier or canonical choice function for an equivalence relation
R on A is

clsR(x) = min
(

z ∈ A | x ρ z
)

= min [x]

So each equivalence class is represented by its least element.

To test whether a, b ∈ A are equivalent we only have to compute f(a) and
f(b) and test for equality. If the values of f are stored in an array this is O(1),
with very small constants.

Total Recall, II 64

Here are some basic ideas involving equivalence relations.

Definition
Let ρ and σ be two equivalence relations on A. ρ is finer than σ (or: σ is
coarser that ρ), if x ρ y implies x σ y. In symbols ρ ⊑ σ.

Note that the index of σ is at most the index of ρ.

To avoid linguistic dislocations, we mean this to include the case where ρ and
σ are the same. We will say that ρ is strictly finer than σ if we wish to exclude
equality.

In terms of blocks this means that every block of ρ is included in a block of σ
(does not cut across boundaries).

If we think of equivalence relations as sets of pairs then

ρ ⊑ σ ⇐⇒ ρ ⊆ σ.

Meet 65

We also need some simple manipulations of equivalence relations.

Definition (Meet of Equivalence Relations)
Let ρ and σ be two equivalence relations on A. Then ρ ⊓ σ denotes the
coarsest equivalence relation finer than both ρ and σ.

In other words,

x (ρ ⊓ σ) y ⇐⇒ x ρ y ∧ x σ y.

This is sometimes written ρ ∩ σ which is fine if we think of the relations as sets
of pairs, but a bit misleading otherwise.

Join 66

The dual notion of meet is join.

Definition (Join of Equivalence Relations)
Let ρ and σ be two equivalence relations on A. Then ρ ⊔ σ denotes the finest
equivalence relation coarser than both ρ and σ.

Note that ρ ⊔ σ is required to be an equivalence relation, so we cannot in
general expect ρ ⊔ σ = ρ ∪ σ in the sets-of-pairs model: the union typically fails
to be transitive. Hence, we have to take the transitive closure:

ρ ⊔ σ = tcl(ρ ∪ σ)

Meet Algorithm 67

Let’s take a closer look at the problem of computing the meet of two
equivalence relations.
We may safely assume that the carrier set is A = [n] and that both relations ρ
and σ are given by their canonical classifier (implemented as two arrays r and s
of size n).
Let τ = ρ ⊓ σ. Then

p τ q ⇐⇒ clsρ(p) = clsρ(q) ∧ clsσ(p) = clsσ(q)

so we are really looking for identical pairs in the table

1 2 3 . . . p . . . n

r(1) r(2) r(3) . . . r(p) . . . r(n)
s(1) s(2) s(3) . . . s(p) . . . s(n)

Meet Algorithm, II 68

Here is an example:

1 2 3 4 5 6 7 8
r 1 1 1 1 5 5 1 5
s 1 2 2 2 1 1 1 2
t 1 2 2 2 5 5 1 8

// construct meet R and Rˆa
for(p = 1 .. n) {

i = r[p]; // classifier for R
j = r[delta[p,a]]; // classifier for R_a
if((i,j) is new)

t[p] = val(i,j) = p;
else

t[p] = val(i,j);
}

Hashing 69

The algorithm uses only trivial data structures except for the “new” query: we
have to check if a pair has already been encountered.
The natural choice here is a hash table, though other fast container types are
also plausible.

Proposition
Using array representations, we can compute the meet of two equivalence
relations in expected linear time.

Exercise
Show how to implement the algorithm in linear time (not just expected) using
a quadratic precomputation.

Moore’s Algorithm 70

This method goes back to a paper by E. F. Moore from 1956.

The main idea is to start with the very rough approximation (F, Q − F) and
then refine this equivalence relation till we get behavioral equivalence.

More precisely, consider the curried transition maps F = { δa | a ∈ Σ } where
δa : Q → Q , δa(p) = δ(p, a).

We need the coarsest equivalence relation finer than (F, Q − F) that is
compatible with respect to F . Compatible means: the δa do not mangle the
blocks of the partition.

The constraint “coarsest” is important, otherwise we could just refine ρ to the
identity (and get back the same machine).

Refinement 71

Definition
Let f : A → A be an endofunction and F a family of such functions.
An equivalence relation ρ on A is f -compatible if x ρ y implies f(x) ρ f(y).
ρ is F-compatible if it is f -compatible for all f ∈ F .

Let ρ be some equivalence relation and write ρF for the coarsest refinement of
ρ that is F-compatible. Note that

ρF =
⊔

{ σ ⊑ ρ | σ F-compatible }

Of course, we need a real algorithm to compute this join.

Refinement Lemma 72

To compute ρF first define for any f ∈ F and any equivalence relation σ:

p σf q ⇔ f(p) σ f(p)

Rf (σ) = σ ⊓ σf

It is easy to see that Rf (σ) is indeed an equivalence relation and is a
refinement of σ. The following lemma shows that we cannot make a mistake
by applying these refinement operations.

Lemma
Suppose ρF ⊑ σ ⊑ ρ. Then

ρF ⊑ Rf (σ) ⊑ σ for all f ∈ F .

If σ not F-compatible implies Rf (σ) Ĺ σ for some f ∈ F .

Proof 73

Let τ ⊑ ρ be F-compatible and assume x τ y. By assumption, τ ⊑ σ. By
compatibility, f(x) τ f(y), whence f(x) σ f(y). But then x Rf (σ) y.

Since σ fails to be F-compatible there must be some f ∈ F such that x σ y
but not f(x) σ f(y). Hence Rf (σ) ̸= σ.

2

According to the lemma, we can just apply the operations Rf repeatedly until
we get down to ρF .

YAFP 74

Surprise, surprise, this is Yet Another Fixed Point problem. Let

R(ρ) =
l

f∈F

Rf (ρ)

Then behavioral equivalence is the fixed point of (F, Q − F) under R.

Alas, this giant-step method is not that great algorithmically unless the
alphabet is very small: we have to hash k+1-vectors of integers.

It is usually preferable to perform a sequence of k baby-steps

ρ 7→ Rδa (ρ)

Here we cycle through a in Σ and stop when nothing new happens during one
cycle.

State Merging Algorithm 75

Once we have computed the behavioral equivalence relation E (or, for that
matter, any other compatible equivalence relation on Q) we can determine the
quotient structure: we replace Q by Q/E, and q0 and F by the corresponding
equivalence classes.

Define

δ′([p]E , a) = [δ(p, a)]E

Proposition
This produces a new DFA that is equivalent to the old one, and reduced.

Exercise
Show that this merging really produces a DFA (rather than some random finite
state machine.

Running Time 76

As we have seen, each refinement step is O(n), so a big step is O(kn) where k
is the cardinality of the alphabet.
Thus the running time will be O(knr) where r is the number of refinement
rounds. In many cases r is quite small, but one can force r = n − 2.

Lemma
Moore’s minimization algorithm runs in (expected) time O(kn2).

Exercise
Figure out how to guarantee linear time for each stage at the cost of a
quadratic time initialization. Discuss advantages and disadvantages of this
method.

Merging Example 77

The 6-state DFA for a⋆b.

1 2

3 4

5 6

a

b

a

b

a

b b

a

a, b a, b

Computing Behavioral Equivalence 78

Transition matrix
1 2 3 4 5 6

a 2 2 5 6 5 6
b 3 4 6 5 5 6

final states {3, 4}:

1 2 3 4 5 6
E0 1 1 3 3 1 1
a 1 1 1 1 1 1
b 3 3 1 1 1 1
E1 1 1 3 3 5 5
a 1 1 5 5 5 5
b 3 3 5 5 5 5
E2 1 1 3 3 5 5

Hence E2 = E1 and the algorithm terminates. Merged states are {1, 2}, {3, 4},
{5, 6}.
To save space, we have performed giant refinement steps.

Another Example 79

Consider the DFA with final states {1, 4} and transition table

1 2 3 4 5 6 7 8
a 2 4 5 2 6 8 4 6
b 3 5 4 3 7 4 8 7

produces the trace:

1 2 3 4 5 6 7 8
E0 1 2 2 1 2 2 2 2
a 2 1 2 2 2 2 1 2
b 2 2 1 2 2 1 2 2
E1 1 2 3 1 5 3 2 5
a 2 1 5 2 3 5 1 3
b 3 5 1 3 2 1 5 2
E2 1 2 3 1 5 3 2 5

Digression: Brzozowski’s Method 80

The last minimization method may be the most canonical, but there are others.
Noteworthy is in particular a method by Brzozowski that uses reversal and
Rabin-Scott determinization to construct the minimal automaton.

Write

rev(A) for the reversal of any finite state machine, and

pow(A) for the accessible part obtained by determinization.

Thus pow preserves the acceptance language but rev reverses it.

Key Lemma 81

Lemma
If A is an accessible DFA, then A′ = pow(rev(A)) is reduced.

Proof.
Let A = ⟨Q, Σ, δ; q0, F ⟩.
A′ is accessible by construction, so we only need to show that any two states
have different behavior.
Let P = δ−1

x (F) ̸= P ′ = δ−1
y (F) in A′ for some x, y ∈ Σ⋆.

We may safely assume that p ∈ P − P ′.
Since A is accessible, there is a word z such that p = δz(q0).
Since A is deterministic, zop is in the A′-behavior of P but not of P ′.

2

Application: Determining Minimal Automata 82

On occasion the last lemma can be used to determine minimal automata
directly.

For example, if A = Aa,−k is the canonical NFA for the language “kth symbol
from the end is a”, then rev(pow(rev(A))) is A plus a sink. Hence pow(A)
must be the minimal automaton.

The same holds for the natural DFA A that accepts all words over {0, 1} whose
numerical values are congruent 0 modulo some prime p. Then rev(A) is again
an accessible DFA and pow(rev(pow(rev(A)))) is isomorphic to A.

Brzozowski Minimization 83

More generally, we can use the lemma to establish the following surprising
minimization algorithm.

Theorem (Brzozowski 1963)
Let A be a finite state machine. Then the automaton pow(rev(pow(rev(A))))
is (isomorphic to) the minimal automaton of A.

Proof.
Â = pow(rev(A)) is an accessible DFA accepting L(A)op.

By the lemma, A′ = pow(rev(Â)) is the minimal automaton accepting
L(A)op op = L(A).

2

Which is Better? 84

One might ask whether Moore or Brzozowski is better in the real world.
Somewhat surprisingly, given a good implementation of Rabin-Scott
determinization, there are some examples where Brzozowski’s method is faster.

Theorem (David 2012)
Moore’s algorithm has expected running time O(n log n).

Theorem (Felice, Nicaud, 2013)
Brzozowski’s algorithm has exponential expected running time.

These results assume a uniform distribution, it is not clear whether this
properly represents “typical” inputs in any practical sense (say, for pattern
matching algorithms).

	Minimal Automata
	The Algebra of Languages
	The Quotient Machine
	Moore's Algorithm

