
CDM
Induction

Klaus Sutner

Carnegie Mellon University

1 Recursion

2 Towers of Hanoi

3 Sierpinski Graph

4 Odd Binomials

5 Recursion in Computer Science

The Concept 2

Recall that we are dealing with entities that are similar to a part of themselves.

This notion has striking examples in geometry, programming, and discrete
mathematics.

In geometry the use of recursion has lead to a whole new class of objects,
in particular self-similar figures and fractals. As it turns out, these are just
as important in describing real world phenomena as classical Euclidean
objects.
Recursion in programming is a standard tool that often leads to elegant,
concise solutions of otherwise messy problems. Programming languages
themselves are often defined in terms of recursive rules.
Many objects in discrete mathematics are defined by recursion and are
manipulated by operations that are similarly defined by recursion. Recur-
sive equations are a central tool in many combinatorial problems.

First a few geometric examples.

The Droste Effect 3

Recursion in Geometry 4

Roughly, we

start with a simple geometric figure (the axiom),
replace the figure by a new one, which consists of several scaled-down
copies of the original (the generator).

In the limit often produces self-similar fractals. In the following example, the
axiom is a square and the generator is a punctured square:

Note that the generator can be thought of as consisting of 8 squares of size
1/3 the original.

Sierpinski Carpet 5

Incidentally, this type of pattern is useful in antenna design.

Taking Things to the Limit 6

In the continuous world of geometry we actually do not need a halting
condition, the replacement operation can continue indefinitely (at the very least
ω steps).

For example, for the Sierpinski carpet there is a clear sense in which the nth
generation set Sn converges to a limit, as n tends to infinity.
In fact, in this particular case

lim Sn =
⋂

Sn ⊆ [0, 1]2

The properties of these limit sets are quite fascinating and their systematic
study was one of the major accomplishments of 20th century geometry.
For example, one interesting consequence of this recursive construction is that,
in the limit, it often leads to figures with non-integral dimension.

Non-Integral Dimension 7

To see why, consider the following method to measure dimension of a classical
geometric figure such as a line, square or cube: count the number of copies of
the figure, scaled down by 1/2, needed to cover the original figure. For lines,
squares and cubes these counts are 2, 4, 8, respectively.
The dimensions are therefore log2 2 = 1, log2 4 = 2 and log2 8 = 3.
Of course, the shrink factor 2 is arbitrary, in general we shrink by 1/k and
consider logk #copies. For lines, square and cubes this makes no difference.

For the Sierpinski carpet we get dimension

log3 8 ≈ 1.89

This makes good intuitive sense: the Sierpinski carpet is not as massive as a
square, but has significantly higher dimension than a simple line. For a more
careful discussion of non-integral dimensions see Hausdorff-Besicovic.

Menger Sponge 8

Note that is not entirely clear how one would go about building a 3-D model
(this one was done on a ZCorp Z406 rapid prototyping machine).

A Hilbert Curve 9

In the limit, this curve fills the whole unit square. As a consequence, the unit
interval has the same cardinality as the unit square.

A Cellular Automaton 10

This is elementary cellular automaton number 90 with local rule
ρ(x, y, z) = x + z mod 2. The pattern has dimension log2 3 ≈ 1.59.

1 Recursion

2 Towers of Hanoi

3 Sierpinski Graph

4 Odd Binomials

5 Recursion in Computer Science

Towers of Hanoi 12

Here is classic (though somewhat tired) example of recursion: 64 golden disks
of different sizes are stacked on three diamond pegs. Unspecified monks are
trying to move the disks from one peg to another, one disk at a time, without
ever placing a larger disk on top of a smaller. A slightly more affordable version
is shown below.

When the monks finish, the world will end.

The Recursive Solution 13

Everyone knows how to solve this problem recursively. Let n = number of
disks. The case n = 1 is trivial; just move one disk, done.

The general case n > 1 can be reduced to n − 1. Here is the method for
moving from peg a to c.

Move n − 1 disks from peg a to peg b.
Move nth disk from peg a to peg c.
Move n − 1 disks from peg b to peg c.

Note that correctness is a bit subtle: moving the n − 1 small disks in a game of
size n really corresponds to a game of size n − 1: the recursive approach works
because the game itself carries an inductive structure.

Computationally speaking, recursion, for all its elegance and simplicity, is a big
gun. One might wonder if there is a non-recursive solution. More generally,
what is the simplest program to compute the moves?

A Run 14

peg 1 peg 2 peg 3 peg 1 peg 2 peg 3
5, 4, 3, 2, 1 5 4, 3, 2, 1
5, 4, 3, 2 1 1 5 4, 3, 2
5, 4, 3 1 2 1 5, 2 4, 3
5, 4, 3 2, 1 5, 2, 1 4, 3
5, 4 3 2, 1 3 5, 2, 1 4
5, 4, 1 3 2 3 5, 2 4, 1
5, 4, 1 3, 2 3, 2 5 4, 1
5, 4 3, 2, 1 3, 2, 1 5 4
5 3, 2, 1 4 3, 2, 1 5, 4
5 3, 2 4, 1 3, 2 5, 4, 1
5, 2 3 4, 1 3 5, 4, 1 2
5, 2, 1 3 4 3 5, 4 2, 1
5, 2, 1 4, 3 5, 4, 3 2, 1
5, 2 1 4, 3 1 5, 4, 3 2
5 1 4, 3, 2 1 5, 4, 3, 2
5 4, 3, 2, 1 5, 4, 3, 2, 1

Note how disk 5 moves only once. Is there any pattern in the recursive solution
that one can exploit?

Better Questions 15

Peg-to-Peg (PtP): move all disks from one peg to another.

Arbitrary-to-Peg (AtP): move all disks from some arbitrary configuration
to one peg.

Arbitrary-to-Arbitray (AtA): move all disks from some arbitrary configura-
tion to some other arbitrary configuration.

Since there are multiple solutions, it is natural in each case to ask for the
solution requiring the least number of moves.
And, one would like good algorithms to compute the optimal solution.

Pushing further, one could ask about the average number of moves for the AtP
or AtA version (we won’t go there).

The Framework: Configuration Space 16

We need to find a formal way to express the configurations of our game: a
complete description of the state of affairs at any particular time.

We will call this collection of all possible configurations Hn.

Of course, we also need to figure out how these configurations are related; in
particular when a configuration C can change into a configuration C′ in a
single move.

Since the rules are symmetric, we should think of Hn as an undirected graph,
the Hanoi graph of order n.

Representation 1: Position Vectors 17

Arguably the most obvious way to represent configurations is to think of them
as n-vectors of peg positions:

C : [n] → ⊯

We will often think of these vectors as words over the digit alphabet
⊯ = {0, 1, 2}.

It will be convenient later to index these words as in x = xn−1xn−2 . . . x1x0
where xn−1 indicates the position of the largest disk, and x0 the smallest one.

So there are 3n configurations.

Moves 18

All moves are of the following kind:

xabi to xcbi where a ̸= b ̸= c.

We allow i = 0, in which case xa simply turns into xc. These moves are always
possible, but i > 0 fails when we are in one of the 3 one-peg configurations.

So the nodes in Hn have degree 3, except for the one-peg configurations with
degree 2.

It is natural to ask if we can draw a useful picture of, say, H5?

Automatic Graph Rendering 19

Upside down, but not bad overall. It clearly shows a nested triangular structure.

Other Layouts 20

Hand Crafted 21

A Fractal 22

Labeled 23

000

001 002

010 011

012

020

021

022

100

101

102

110

111 112

120 121

122

200 201

202

210

211

212

220

221 222

Same coordinates, but with vertex labels. Ponder deeply.

Sanity Check 24

The doctored picture is pretty (mathematicians have slightly less taxing
standards than the drama department), but it’s worth checking what exactly it
represents and how. Visuals sometimes can be deceiving.

Does the picture properly represent Hn? Why and how?
Where in the picture is the solution for PtP?
Where is recursion in this picture?
What do the symmetries mean?

Exercise
Answer all these questions in detail.

Exercise (Hard)
Develop an algorithm to draw the perfect picture (for arbitrary n).

Hint 25

Application: PtP 26

The graph Hn provides a straightforward solution to PtP: the shortest path
from one peg-only configuration to another clearly leads along one of the three
sides of the main triangle.

It is obvious that the length of this path is 2n − 1. Right?

This is actually quite remarkable: we are saying there is a solution of this
length, and there is no shorter solution–it does not matter how clever your
solution is; even if it is non-computable, it cannot beat ours.

Really? 27

The last result seems compelling, but it is based on “visual evidence”: we stare
at a particular embedding of a very regular graph and we “see” the shortest
path right away.

Thanks to millions of years of evolution, humans excell at visual computation,
but it still is a good idea to verify our insights in a more formal, logical manner.

Exercise
Prove that the shortest path between vertex 1n and 2n in Hn has length
2n − 1. Use only formal properties of the graph (a blind theorem prover must
be able to understand your arguments).

1 Recursion

2 Towers of Hanoi

3 Sierpinski Graph

4 Odd Binomials

5 Recursion in Computer Science

Fractal Coordinates 29

The hand-drawn (sic) picture of H5 from above suggests another coordinate
system: the graph is composed of 3 similar, smaller copies, one on top, one on
the left, and one on the right. If we were dealing with the continuous limit, the
three copies would indeed be scaled versions of the main one.

To keep notation simple, we write t, l and r for the three directions.

So, we can uniquely label every vertex in Hn by a word of length n over
{t, l, r}.

But we won’t: naming directions is just syntactic sugar, it is cleaner to use
labels {0, 1, 2}. This is the old battle between equality and isomorphism.

Sierpinski Labels 30

000

001 002

010

011 012

020

021 022

100

101 102

110

111 112

120

121 122

200

201 202

210

211 212

220

221 222

Dire Warning 31

We will call the new graph on ⊯n the Sierpinski graph Sn of order n.

Warning: Hn and Sn are not the same.

000

001 002

010 011

012

020

021

022

100

101

102

110

111 112

120 121

122

200 201

202

210

211

212

220

221 222

000

001 002

010

011 012

020

021 022

100

101 102

110

111 112

120

121 122

200

201 202

210

211 212

220

221 222

Sierpinski Edges 32

The edges in Sn are defined like so:

xabi to xbai where a ̸= b.

We allow i = 0 which produces the small triangle edges.

Note that Sn has a very simple recursive structure: edges are of the form
(ax, ay) where (x, y) ∈ Sn−1, plus glue edges (abn−1, ban−1).

Huge Surprise: Hn and Sn are isomorphic. This is even more surprising since
they share the same vertex set and some of the edges.

Hanoi and Sierpinski 33

blue: triangle edges, green: Hanoi glue, red: Sierpinski glue

Automaticity 34

In an intuitive sense, both Hn and Sn are extremely simple computable
structures: the vertex set is just ⊯n, and the edges are defined by very simple
rules.

In fact, for both graphs we have:

There is a finite state machine that recognizes the vertex set.
There is a finite state machine that recognizes the edge set.

It is tempting to ask whether the isomorphism between Hn and Sn can be
computed by a finite state machine?

A Linear Time Isomorphism 35

Let S3 be the symmetric group on {0, 1, 2} and write τa for the transposition
fixing a: τ0 = (0, 2, 1), τ1 = (2, 1, 0) and τ2 = (1, 0, 2).
τa acts on ⊯⋆ pointwise. Define

α(ax) = a α(τa(x))

Hence we have
α(uv) = w α(τu(v))

where τu is the obvious abbreviation for the product of various transpositions.
Note that α can easily be computed in linear time and constant space.

Lemma
α is an isomorphism from Sn to Hn. Additionally, α has order 2: α2 = I.

A Transducer 36

The natural algorithm to compute α essentially maintains an element of S3 to
avoid linear time rewrites of the tail of the argument.

We can make this explicit by building a transducer on state set S3 and
transitions

p
a/pa−−−→ τap

In fact, this is an example of an invertible transducer.

Exercise
Prove the lemma. Then show that the transducer really computes α.

Transducer Diagram 37

1

τ0 σ

τ1

σ2τ2

0:0

0:1
0:2

1:1

1:2

1:0

2:2 2:1

2:0

Who Cares? 38

So why should anyone care about the isomorphism between Hn and Sn?

Graph theorists, of course, but is there anybody else?

The isomorphism provides a computationally cheap way to go from Hn to Sn,
which fact can be exploited to attack shortest path problems: instead of finding
a shortest path in Hn from x to y, we find a shortest path in Sn from α(x) to
α(y).

The second task is easier than the first.

AtP 39

An optimal solution of a AtP problem.

AtP Algorithm 40

The AtP problem is slightly easier than the general problem. Suppose we are in
configuration x ∈ ⊯n and we want to move all disks to peg a.
Here is a recursive solution:

Case xn−1 = a: move n − 1 small disks to a.

Case xn−1 = b ̸= a: let c be the third peg.

Move n − 1 disks to peg c.
Move nth disk to peg a.
Move n − 1 disks to peg a.

Note that the last part is the same as in the standard peg-to-peg problem.

Path Lengths in AtP 41

So how many steps does it take to get from anywhere to one peg?

Phrased differently: what is the distance between an arbitrary configuration
and a one-peg-configuration.

Let’s try to count:

Nd = number of configurations at distance d.

By inspection:
d 0 1 2 3 4 5 6 7 8
Nd 1 2 2 4 2 4 4 8 2

Not exactly clear, except that we seem to get powers of 2.
Note the values at 2, 4, 8.

Distance Picture 42

0

1515

7

12

11

7

11

12

3

13

14

6

15

9

5

10

15

3

14

13

5

15

10

6

9

15

1

15

14

6

13

11

7

10

13

3

12

15

7

15

8

4

11

15

2

15

13

5

14

11

7

9

14

1

14

15

7

13

10

6

11

13

2

13

15

7

14

9

5

11

14

3

15

12

4

15

11

7

8

15

Digit Sums 43

It seems the answer depends on the binary expansion of d.
Let’s write ds(x) for the digit sum of x, the number of 1’s in the binary
expansion.

Claim

Nd = 2ds(d)

Proof. (by geometry)
Induction on k: show the claim holds for all 0 ≤ d < 2k, for all k.
Base case k = 0 is trivial.
Step: Use the picture to show that for d′ = 2k + d, 0 ≤ d < 2k we have
Nd′ = 2Nd. Then

2ds(d′) = 2 · 2ds(d) = 2Nd = Nd′

2

Distance Function 44

Similarly it is easy to compute the distance ∆a(x) from an arbitrary
configuration x to a one-peg configuration an in the Sierpinski graph Sn.

∆a(x) =
∑
xi ̸=a

2i

In general, the distance is given by

dist(ax, by) = 1+min
(
∆a(x) + ∆b(y), 2|x| + ∆c(x) + ∆c(y)

)
Here a ̸= b ̸= c.

To see why, take a look at two typical shortest paths.

Two AtA Cases 45

Some AtA solutions move the largest disk once, some twice–whence the min
operator.

Automaticity 46

Note that 0 ≤ ∆a(x) < 2n. There is a finite state transducer that computes
∆a(x) as an n-bit binary number, written MSD first.

Safe addition of n-bit numbers (no overflow) as well as the computation of the
minimum can similarly be handled by a transducer.

In conjunction with the automatic isomorphism we have the following fact.

Lemma
The distance between two configurations in a Hanoi graph can be computed by
a finite state transducer.

AtA 47

Exercise
Find a way to determine whether a AtA problem is of type I or type II.

Exercise
Construct a transducer that computes the distance of two AtA configurations.

Exercise
Produce an elegant algorithm to solve AtA.

A Nonrecursive PtP Solution 48

Here is another picture of the Hanoi graph, this time distinguishing between
small and medium disk moves (triangle versus glue edges).

blue: triangle edges, red: glue edges

Alternating Moves 49

It is clear from the picture that on any shortest path, blue and red edges
alternate.
Medium moves are forced: there is only one peg the disk can go to.
Small disk moves could be clockwise or counterclockwise.
In each blue triangle row, clockwise or counterclockwise moves alternate
(ignore the horizontal edges), and each row starts with a clockwise move.

Hence there is a surprisingly simple solution for the peg-to-peg problem:
Alternately move the smallest disk clockwise, and the medium disk as forced,
until all disks are on the target peg.

Exercise
Prove that the non-recursive method really works.

1 Recursion

2 Towers of Hanoi

3 Sierpinski Graph

4 Odd Binomials

5 Recursion in Computer Science

Pascal’s Triangle 51

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Pascal modulo 2 52

. . . and Hanoi 53

Hanoi graphs have an uncanny similarity to Pascal’s triangle modulo 2.
Could this be mere coincidence?

Odd Binomials 54

We claim that the odd binomial coefficients
(

a
b

)
where 0 ≤ b ≤ a ≤ n = 2n − 1

correspond to possible configurations in n-disks Hanoi.

When is a binomial coefficient odd?

Definition
Let 0 ≤ x ≤ y. Write x = xkxk−1 . . . x1x0 and y = ykyk−1 . . . y1y0 for the
binary expansions, both padded to k bits. Define x to be bitwise
less-than-or-equal y (x ⊑ y) if ∀ i (xi ≤ yi)

Theorem (Lucas, 1878)(
y
x

)
is odd if, and only if, x ⊑ y.

Thinking about bitvectors, this means Sx ⊆ Sy iff x ⊑ y iff
(

y
x

)
is odd.

Déjà vu all over 55

Note that ⊑ is just the product order on 2k.
We have seen a plot of this relation before (below for k = 6).

Again, this looks vaguely like a Hanoi graph, but rotated. With a little bit of
effort, it too can be made to look very much like H6.

But Why? 56

As a first sanity check we have to check that the number of odd binomial
coefficients

(
a
b

)
, 0 ≤ b ≤ a < 2n, is 3n.

Recall the binary digit sum ds(x). An easy induction on n shows∑
b⊑a<2n

1 =
∑

a<2n

2ds(a) = 3n.

By Lucas’ theorem there are 2ds(a) odd binomial coefficients of the form
(

a
b

)
.

Hence there is a bijection between the odd binomials and Hanoi configurations.
But we are looking for more: we want a natural isomorphism, a bijection that
preserves adjacencies, preferably one that is easy to compute.

Hanoi Adjacency 57

In a Hanoi graph, adjacency is defined by the “move one disk” operation.
Let a, b, c ∈ ⊯, pairwise distinct.

Moving the smallest disk:

ua

ub uc

Moving the medium top disk:

uab . . . b

ucb . . . b

Binomial Adjacency 58

But for binomials, adjacency is inherited from Pascal’s triangle. Since we have
to transform the image a bit to get a good match, it is harder to keep track of
things. Let v ⊑ u and write numbers in binary.

Basic triangles:

(
u0
v0

)

(
u1
v0

) (
u1
v1

)

Connecting edges:

(
u01...1
v00...0

) (
u01...1
v01...1

)

(
u10...0
v00...0

) (
u10...0
v10...0

)

There are similarities, but it is not clear how to connect these pieces.

A Trick 59

Instead of converting to Hanoi configurations, let’s just try to convert to
Sierpinski.

We want an isomorphism
binom β−→ ⊯n

This turns out to be really easy: write a and b in binary, padded to n digits.(
a1a2 . . . an

b1b2 . . . bn

)
Since bi ≤ ai there are 3 possible pairs (ai, bi). Replace (ai, bi) by ai + bi ∈ ⊯.

Exercise
Show that β really is an isomorphism.

1 Recursion

2 Towers of Hanoi

3 Sierpinski Graph

4 Odd Binomials

5 Recursion in Computer Science

Controlling Complexity 61

As the geometry examples show, recursion can be used to generate complexity
from very simple rules.

Often one is interested in the opposite direction:

Complicated problems may have simple recursive solu-
tions.

Requirements:

Simple starting point.
A way to obtain a difficult solution in terms of a less difficult one (or per-
haps several less difficult ones).

This is in stark contrast to an explicit solution (which may be preferable but
very hard to obtain).

Programming Languages 62

We can describe arithmetic expressions recursively as follows:

expr = integer
expr = expr + expr
expr = expr − expr
expr = expr × expr
expr = expr / expr
expr = (expr)

Programming languages can be (almost) completely specified in terms of such
recursive rules (so-called context-free grammars).

Even better: the rules can be translated into a compiler automatically.

Recursive Datatypes 63

We can rephrase this definition of expressions as follows:

Atoms Every integer is an expression.
Constructors Expressions are closed under the constructors plus, minus, times,

divide and parenthesize.

Traditionally recursive datatypes used to be called “inductively defined sets”.
The advantage of this type of definition is that it makes it easy to define
operations on the datatype, and to prove properties of the datatype and/or the
operations:

Atoms Define the operation on atoms.
Constructors Define the operation on compound objects obtained from con-

structors (assuming the operation is already defined on the subob-
jects.

More on this in the section on Induction.

Recursion in CS 64

Prime example: recursively defined functions.
The computation is similar to a sub-computation.

Requirements:

Need exit condition.
Calls must be on “smaller” values.

Smaller can mean many things here:
n − 1, n/2, shorter list, subtree, . . .

Need a well-ordering: no infinite descending chains

x0 ≻ x1 ≻ x2 ≻ x3 ≻ . . . ≻ xn ≻ xn+1 ≻ . . .

Otherwise the computation goes on forever.

Usual Examples 65

Factorial

int fac(int x)
{

if(x == 0) return 1;
return x * fac(x-1);

}

Euclidean Algorithm

int gcd(int x, int y)
{

if(y == 0) return x;
return gcd(y, x % y);

}

Fibonacci Numbers 66

F0 = 0, F1 = 1,

Fn = Fn−1 + Fn−2

A few values:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
F100 = 354224848179261915075

int fibo(int n)
{

if(n < 2) return n;
return fibo(n-1) + fibo(n-2);

}

Disaster Strikes 67

This implementation is enormously wasteful! It calls itself endlessly (well, very
often). E.g., fibo(10) causes 55 calls to fibo(1).

This type of tree is actually useful to build a data structure (see Fibonacci
heaps).

Counting Calls 68

So how many calls are there really?

Cn = number of calls in fibo(n)

Clearly, C0 = C1 = 1 and

Cn = Cn−1 + Cn−2 + 1

for n ≥ 2. This looks very similar to the definition of the Fibonacci numbers
themselves.
So one might suspect that the solution has something to do with Fibonacci
numbers.

We’ll have more to say about recurrence relations in a while, for the time
being, compute a table, perhaps there is some pattern.

A Table 69

In the next table, Sn =
∑

i≤n
Fn.

n Cn Fn Sn

0 1 0 0
1 1 1 1
2 3 1 2
3 5 2 4
4 9 3 7
5 15 5 12
6 25 8 20
7 41 13 33
8 67 21 54
9 109 34 88
10 177 55 143
11 287 89 232
12 465 144 376

From the table, it looks like

Cn = Fn−1 + Sn

The Solution 70

A closer look shows that
Sn = Fn+2 − 1

But then

Cn = Fn−1 + Sn

= Fn−1 + Fn+2 − 1
= Fn−1 + Fn + Fn+1 − 1
= 2 · Fn+1 − 1

So far, this is just a conjecture, prompted by the table.
But, it’s now straightforward to prove this conjecture by induction on n.

Finding the right answer is often much harder than showing that it is in fact
correct once it has been found.

Summary 71

Induction and recursion are standard concept in mathematics and com-
puter science.
Induction is one of the most important proof technique.
Some simple induction proofs (most notably on the naturals) can be auto-
mated.
In computer science, inductively defined structures are known as recursive
datatypes and are used extensively.
Recursive (inductively defined) operations on recursive datatypes are easy
to implement and their properties can be established via inductive proofs.

	Recursion
	Towers of Hanoi
	Sierpinski Graph
	Odd Binomials
	Recursion in Computer Science

