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Digression: Bourbaki 2

Recall Bourbaki’s central idea: organize
math into structures and study their
properties and relationships.

As we now know, this idea works par-
ticularly well in algebra.



A Breakthrough 3

The axiomatic/structural style was originally pioneered by D. Hilbert;
specifically for algebra the major breakthrough publication is van der Waerden’s
(1903-1996) classical texts that cemented the notion of algebraic structure (a
first-order structure) as the fundamental concept in algebra:

B. L. van der Waerden
Moderne Algebra, Teil I
Springer Verlag, Berlin, 1930

B. L. van der Waerden
Moderne Algebra, Teil II
Springer Verlag, Berlin, 1931



Opposition 4

It is completely clear to me which conditions caused the gradual deca-
dence of mathematics, from its high level some 100 years ago, down
to the present hopeless nadir. Degeneration of mathematics begins with
the ideas of Riemann, Dedekind and Cantor which progressively repressed
the reliable genius of Euler, Lagrange and Gauss. Through the influence
of textbooks like those of Hasse, Schreier and van der Waerden, the new
generation was seriously harmed, and the work of Bourbaki finally dealt
the fatal blow.

C. L. Siegel, letter to A. Weil, 1959.

This is kind of funny, since Bourbaki was in part an attempt to create a
counterweight to Hilbert’s school.



More Opposition 5

Meanwhile, I was in a mathematics department, and this style of mathe-
matics was not at all in fashion. Bourbaki was king: The more abstract
you could be, expressing everything in terms of morphisms and cate-
gories, the better. Highly abstract methods were in favor in all the best
mathematical schools. In more and more of the lectures that I was
hearing at Caltech, I would find myself sitting in the audience saying to
myself, “So what? So what?”
Eventually I switched fields and became a professor of computer science.

D. E. Knuth, 2014



Status Quo 6

To be clear: Bourbaki won, hands down.

In a sense, that’s just too bad: as far as Bourbaki is concerned, there is no
computational universe, just some weird, set-theory based, logic-deprived,
picture-less, non-applicable, entirely un-algorithmic wasteland.

I think this will change in the foreseeable future, mostly thanks to those pesky
CS dudes and all the computing hardware/software everywhere, but right now
we all still live in Bourbaki’s paradise (actually, hell).

So, we will follow the axiomatic approach very closely, with a little computation
added in.



Useful Concepts 7

The following general ideas are crucial when dealing with algebraic structures:

Substructure A structure that is obtained by shrinking the carrier set and
the algebraic operations.

Morphism A map from one structure to another that preserves the rele-
vant operations and relations. Aka homomorphism.

Quotient A structure obtained by identifying some of the elements of a
given structure (via a congruence, an equivalence relation that
is compatible with the algebraic operations).

Product A structure that is defined over the Cartesian product of other
structures, with appropriately defined operations.



Magmas 8

Definition
A magma is a structure with a single binary operation ∗:

G = ⟨G, ∗⟩

where ∗ : G × G → G .

The operation is often referred to as multiplication.

In a magma, there are no further restrictions on the operation. This is really
the logic perspective, a first-order structure with a single binary function.
Algebraists are typically not much interested in this level of generality, they
want additional constraints on the operation (such as associativity).



Term Trees 9

The terms over a magma can be construed as full binary trees: the interior
nodes correspond to “multiplications” and the leaves are variables or constants.

*

* *

x a * z

a y



Notation Warning 10

Unfortunately, magmas are also referred to as “groupoids.”

This is a bad idea, since groupoids are more generally defined as structures
⟨A, ∗, −1⟩ that are, roughly speaking, groups with a partial multiplication. More
precisely, we have

∗ is a partial binary operation,
−1 is a total unary operation,
subject to the following laws:

Partial associativity: if all terms are defined, then a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Inverse: for all a, a ∗ a−1 and a−1 ∗ a are defined.
Identity: if a ∗ b is defined, so is a−1 ∗ a ∗ b = b and a ∗ b ∗ b−1 = a.

We won’t discuss groupoids here.



Some Magmas 11

Example
The natural numbers with exponentiation form a magma.

Example
The integers with subtraction form a magma.

Example
The positive rationals with division form a magma.



More Magmas 12

Example
Rooted binary trees can be considered as magma

⟨T , ∗⟩

where T is the collection of all rooted binary trees and ∗ denotes the operation
of attaching two trees to a new root. Note that this operation is highly
non-associative:

r ∗ (s ∗ t) ̸= (r ∗ s) ∗ t

no matter what r, s and t are (at least in the finite case).

Example
Likewise we could consider lists over some groundset A as a magma

⟨List(A), ∗⟩

where ∗ is interpreted as join (concatenation). This operation is associative.



Shallon’s Graph Algebras 13

It is often helpful to translate combinatorial structures into algebraic ones. For
example, suppose G = ⟨V, E⟩ is a digraph. We can translate the graph into a
magma

A(G) = ⟨V⊥, ∗⟩

by setting V⊥ = V ∪ {⊥} where ⊥ /∈ V is a new point and

u ∗ v =
{

u if (u, v) ∈ E,
⊥ otherwise.

This operation is not associative in general.

Exercise
Figure out what left (or right) parenthesized products mean in A(G). Is such a
graph algebra commutative?



Magmas, II 14

Magmas are also (mildly) helpful when dealing with more complicated
structures: it is always a good idea to try to understand if a result (or even a
definition) also works over magmas or whether it really requires the additional
assumptions.

All the fundamental notion of sub-structure, congruence, homomorphism and
so on already make sense for magmas and are perhaps a bit easier to
understand there since there are no other properties lying around that can
obscure the view.

Exercise
Rewrite all the definitions below in the context of magmas.



Free Magmas 15

In algebra, it is interesting to understand a structure that satisfies certain
specifications, but has no other, special properties. These structures are called
free.

So suppose we have a carrier set A. What would the free magma over A look
like?

Just like the term trees from above, except that there are no free variables this
time, all the leaves are labeled by elements of the ground set A.



The Fundamentals 16

Consider a magma A = ⟨A, ∗⟩.

A substructure of A consists of a set B ⊆ A that is closed under ∗.

A homomorphism from ⟨A, ∗⟩ to ⟨B, ·⟩ is a map φ : A → B such that
φ(x ∗ y) = φ(x) · φ(y).

A quotient of ⟨A, ∗⟩ is given by an equivalence relation ρ such that x ρ x′

and y ρ y′ implies x ∗ y ρ x′ ∗ y′ (a congruence).

The product of ⟨A, ∗⟩ and ⟨B, ·⟩ is the structure ⟨A×B, ⊗⟩ where (x, y)⊗
(x′, y′) = (x ∗ x′, y · y′).



Semigroups 17

Definition
A semigroup is a magma with an associative operation.

Thus, for all x, y, z in a semigroup G = ⟨G, ∗⟩ we have

x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Many natural algebraic operations have this property, but not all:

Exponentiation is not associative.

Subtraction is not associative (but the underlying addition is).

Graph algebras are generally not associative.



Idempotents 18

Definition
An idempotent in a semigroup is an element e such that e ∗ e = e.

So an idempotent is a bit weaker than an identity.

Lemma
Let S be a finite semigroup. Then S contains an idempotent.

Exercise
Prove the idempotent element lemma. Think Floyd.



Free Semigroups 19

We have seen that the free magma over A is the collection of ground terms,
essentially binary trees with leaves labeled in A.
In a semigroup we have one additional specification: associativity. Hence we
can identify all trees with same frontier: they correspond to the same
semigroup element. Hence, we might as well think of them as a list.

∗

a ∗

b ∗

c d

∗

∗

∗

a b

c

d ∗

a b c d



Words 20

But once we think of the elements as flat lists
∗

a b c d

we might as well just use the sequence abcd, a word over the alphabet A.

So the set of non-empty words over A is the free semigroup generated by A.



Six Leaves 21



Monoids 22

Definition
A monoid is a semigroup with an identity element e: e ∗ x = x ∗ e = x.

One usually writes monoids in the form

A = ⟨A, ∗, e⟩

to indicate the neutral element. Of course, the neutral element is idempotent.

Proposition
The neutral element in a monoid is unique.

Proof. e = e ∗ e′ = e′. 2



Classical Examples 23

Example
The set of all words over a fixed alphabet forms a monoid with concatenation
as operation. The neutral element is the empty word.

Example
The set of all lists over some fixed ground set forms a monoid with join as
operation. The neutral element is the empty list.

Example
The set of all functions f : A → A for some arbitrary set A forms a monoid
with functional composition as operation. The neutral element is the identity
function.

Example
The set of all binary relations on A, for some arbitrary ground set A, forms a
monoid with relational composition as operation. The neutral element is the
identity relation.



Classical Examples, cont’d. 24

Example
The set of natural numbers with addition forms a monoid; the neutral element
is 0.
Ditto for integers, rationals, algebraic numbers, reals, complex numbers.

Example
The set of positive natural numbers with multiplication forms a monoid; the
neutral element is 1.

Example
The set of all n by n matrices of, say, integers, with matrix multiplications
forms a monoid; the neutral element is the identity matrix.



Strange Examples 25

Example
A band is a semigroup defined on the Cartesian product A × B where A and B
are two arbitrary sets (non-empty). The operation is

(a, b) ∗ (c, d) = (a, d)

It is obvious that this operation is associative. Note that a band is idempotent:
x ∗ x = x for all x.

Example
The bicyclic semigroup is defined on N × N by the operation

(a, b) ∗ (c, d) = (a − b + max(b, c), d − c + max(b, c))

Associativity requires a little argument here. This may look strange, but it is
just the free semigroup on two generators r and s subject to sr = 1.
The idempotents of this semigroup are exactly the elements (a, a).



Solving Equations 26

Monoids appear quite frequently, but have one crucial flaw from the point of
view of solving equations: in general we cannot solve the equation

a ∗ x = b.

To make sure solutions always exist we need more assumptions. One step in
the right direction is the (left) cancellation property:

a ∗ x = a ∗ y implies x = y

This guarantees that a solution, if it exist, is unique.

Exercise
Check which of the monoids from above have the cancellation property. What
restrictions on the left multiplier a are necessary to guarantee cancellation?



Generalized Inverses 27

To solve equations, one needs some kind of inverse element. There are several
classes of semigroups that are closer to groups then general ones.

Definition
An element a of a semigroup is regular if there is an element b such that
aba = a. A semigroup is regular if all its elements are.
Element a is said to have a generalized inverse if there is a b such that aba = a
and bab = b. A semigroup is inverse if every element has exactly one
generalized inverse.

Writing a′ for the generalized inverse in an inverse semigroup we have

a′′ = a and (ab)′ = b′a′

Lemma
A semigroup is inverse iff it is regular and all its idempotents commute.



Sierpinski Triangle 28



Klein’s Erlanger Programm 29

Felix Klein’s “Erlanger Programm” of 1872
proposed to characterize geometries by study-
ing the invariants of linear transformation
groups.

Algebra is the big problem solver.



Symmetries in Geometry 30

We can rotate and reflect the Sierpinski triangle, the underlying group being
the dihedral group D3 (symmetries of an isosceles triangle).

Write a for rotation by 2π/3 and b for reflection along the vertical axis. Then

aaa = 1 bb = 1 ba = aab

As a consequence, there are 6 ways to move an isosceles triangle back to itself.



White Lie 31

But for the Sierpinski triangle that’s not really the whole story, it is much more
complicated than just a isosceles triangle. For example, we could shift one of
the 3 big component triangles to another one.

Or we could map the whole figure into the upper big triangle; alternatively, the
lower left or right triangle.

Or into one of the smaller triangles that appear in various places in the figure.

Or one of the smaller triangles into yet another one.

And so on, and so forth . . .



Partial Symmetries 32

One reason inverse semigroups are very important is that they generalize
symmetry groups.
For any set X consider the symmetric monoid

I(X) = { f : X ↛ X | f partial, injective }

Then I(X) is an inverse semigroup.

For the Sierpinski triangle T the symmetric monoid of T has many maps that
are absent in the corresponding group.

Exercise
Explain why I(X) fails to be a group (for X non-empty).



Groups 33

At last, here is the kind of structure that guarantees existence and uniqueness
of solutions of linear equations.

Definition
A group is a monoid G = ⟨G, ·, e⟩ where

∀ x ∃ y (x · y = y · x = e)

The y above is uniquely determined by x and called the inverse of x.

Since x uniquely determines the inverse one usually switches the signature to
(2,1,0) and writes

G = ⟨G, ·, −1, e⟩

This has the major advantage that the axioms are then equational:

x · x−1 = x−1 · x = e



Abelian Groups 34

Definition
A group is commutative or Abelian if x · y = y · x for all x and y.

Notation:
It is customary to write Abelian groups additively as ⟨G, +, −, 0⟩, ⟨G, +, 0⟩ or
⟨G, +⟩.

General groups are written multiplicatively as ⟨G, ·, −1, 1⟩, ⟨G, ·, 1⟩ or ⟨G, ·⟩. It
is standard to omit the multiplication operator (and use concatenation
instead).

xy is easier on the eye than x · y, but this gets tricky when dealing with
multiple operations.



Classical Examples 35

Example
The set of integers (rationals, reals, complexes) with addition forms a group;
the neutral element is 0.

Example
The set of modular numbers relatively prime to modulus m with multiplication
forms a group; the neutral element is 1.

Example
The set of non-zero rationals (reals, complexes) with multiplication forms a
group; the neutral element is 1.



Classical Examples 36

Example
The set of all regular n by n matrices of reals, with matrix multiplications
forms a group; the neutral element is the identity matrix.

Example
The set of all permutations f : A → A for some arbitrary set A forms a group
with functional composition as operation. The neutral element is the identity
function.



Solving Equations 37

In a group, the equation

a · x = b

always has the unique solution

x = a−1 · b

Note that this is easier than standard arithmetic: there is no need to worry
about the case a = 0.

The systematic study of abstract groups was one of the central
accomplishments of 19th century mathematics.
They appear in many, many places and some understanding of the their basic
properties is crucial.



Why Abstract Algebra? 38

Laziness: any property, of, say, groups derived from only the axioms holds in all
groups, automatically. You only check three simple properties, and all results
apply.

Psychology: it is sometimes easier to argue abstractly than in a concrete
situation (you can’t see the forest because of all the trees).

This a bit hard to believe, but true. E.g., consider non-singular matrices of
reals. Show that

(A · B)−1 = B−1 · A−1

One could try to use the properties of matrix multiplication and, say, Gaussian
elimination, to prove this. Any such argument would be very hard and
technically difficult.

Exercise
Give a simple, abstract proof of this equation in any group whatsoever.



RAAGs 39

Aka right angular Artinian groups, don’t ask. Here graphs are used as a
convenient tool to describe certain groups. Consider a ugraph G = ⟨V, E⟩. We
can translate G into a RAAG as follows

R(G) = ⟨V | uv = 1 for u−v ∈ E⟩

Thus V is the set of generators and two generators commute iff they form an
edge. Here some examples:

a b

cd

a b

cd

a b

cd

The first corresponds to the free group on 4 generators, the last to the free
Abelian group on 4 generators. The one in the middle is F (a, c) × F (b, d).
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Permutations 41

For our purposes the most important examples of groups are those comprised
of permutations.

Definition
A permutation is a bijection f : A → A , in particular when A is a finite set.
The collection of all permutations on A, an n-element set, under functional
composition is the symmetric group (on n letters or points).

Notation: Sn

As we will see shortly, in most cases the full symmetric group is too large; we
need to focus on subgroups of Sn.



Permutations 42

We will focus on the carrier set A = [n]. In this case, we can represent f by a
2 × n matrix of the form(

1 2 3 . . . n − 1 n
f(1) f(2) f(3) . . . f(n − 1) f(n)

)
This is the so-called two-line representation of f . Needless to say, the first row
in this matrix is really redundant, but this redundancy makes it a bit easier to
read off specific values. Alternatively, we can use one-line representation:

[f(1), f(2), . . . , f(n − 1), f(n)]

Note that we have chosen to write [a1, . . . , an] to specifically indicate a map
from [n] → [n]. This is slightly less dangerous than just writing (a1, . . . , an),
which could mean a great many things.



Cycle Decomposition 43

Suppose f is a permutation. The functional digraph of f is particularly simple:
it consists only of cycles (all transients are 0).

Example
Here is a permutation on n = 12 in two-line notation.(

1 2 3 4 5 6 7 8 9 10 11 12
10 12 8 3 7 9 5 6 11 2 4 1

)
It produces the cycles

(1, 10, 2, 12), (3, 8, 6, 9, 11, 4), (5, 7)

There are 3 cycles of lengths 4, 6, 2, respectively.

Note that there could be just a single cycle of length n: (1, 2, . . . , n) in cycle
notation stands for the cyclic shift.



Omitting Fixed Points 44

It is customary (and often very useful) to omit fixed points from the list of
cycles.

Example
The cycle decomposition of

[4, 7, 1, 6, 8, 9, 11, 5, 2, 10, 3, 12, 14, 13]

would be written as

(1, 4, 6, 9, 2, 7, 11, 3), (5, 8), (13, 14),

leaving out the fixed points 10 and 12.

In standard mathematics texts you should expect to find the more compact
notation used a lot.



Computing the Cycle Decomposition 45

Lemma
We can compute the cycle decomposition of a permutation f : [n] → [n] in
time and space linear in n.

Here we tacitly assume that f(x) can be computed in time O(1) (which is safe
since ordinarily f will be given by an explicit array).

There are at least two ways to think about this:

Compute the strongly connected components in the functional digraph of
f .
Compute the orbits of the function f , exploiting the fact that they are all
periodic.

Note that generating the cycle decomposition seems to require linear space (as
opposed to Floyd’s algorithm for transients and period).



Canonical Cycle Decomposition 46

Note that we can rearrange the cycles arbitrarily, and we can rotate each
individual cycle without changing the underlying permutation.
For example, the following two cycle decompositions describe the same
permutation on n = 14.

(7, 5), (11, 4, 3, 8, 6, 9), (12, 1, 10, 2)
(1, 10, 2, 12), (3, 8, 6, 9, 11, 4), (5, 7)

The second representation may seem more natural from the implementor’s
point of view, but it is the first that has better combinatorial properties.

Definition
The canonical cycle decomposition (CCD) of a permutation is obtained by
rotating all cycles so that the largest element is up front and the cycles are
ordered by first element. If the least element is in the first position we speak of
the reverse canonical cycle decomposition (RCCD)



More Natural? 47

Here is the prototype algorithm that almost everybody would write when asked
to implement cycle decomposition.

for x = 1,..,n do
if( x unmarked )

mark x;
res = (x);
while( f(x) unmarked )

x = f(x);
mark x;
append( res, x );

output res;

This program places the least element first in each cycle and returns the cycles
sorted by first element. In other words, the straightforward algorithm produces
RCCD rather than CCD.



CCD for Length 4 48

Here are the CCDs for all elements of S4, enumerated in lex order. For clarity,
we write fixed points.

(1), (2), (3), (4) (1), (2), (4, 3) (1), (3, 2), (4) (1), (4, 2, 3)
(1), (4, 3, 2) (1), (3), (4, 2) (2, 1), (3), (4) (2, 1), (4, 3)
(3, 1, 2), (4) (4, 1, 2, 3) (4, 3, 1, 2) (3), (4, 1, 2)
(3, 2, 1), (4) (4, 2, 1, 3) (2), (3, 1), (4) (2), (4, 1, 3)
(3, 1), (4, 2) (4, 1, 3, 2) (4, 3, 2, 1) (3), (4, 2, 1)
(2), (4, 3, 1) (2), (3), (4, 1) (4, 2, 3, 1) (3, 2), (4, 1)

Exercise
Find a good algorithm to compute the CCD of a given permutation. What is
the running time of your algorithm?



Flattening CCDs 49

Here are these CCDs flattened out.

1, 2, 3, 4 1, 2, 4, 3 1, 3, 2, 4 1, 4, 2, 3
1, 4, 3, 2 1, 3, 4, 2 2, 1, 3, 4 2, 1, 4, 3
3, 1, 2, 4 4, 1, 2, 3 4, 3, 1, 2 3, 4, 1, 2
3, 2, 1, 4 4, 2, 1, 3 2, 3, 1, 4 2, 4, 1, 3
3, 1, 4, 2 4, 1, 3, 2 4, 3, 2, 1 3, 4, 2, 1
2, 4, 3, 1 2, 3, 4, 1 4, 2, 3, 1 3, 2, 4, 1

We get all permutations. Could this be coincidence?



A Bijection 50

From the data structure point of view, the cycle decomposition is a list of lists
of integers. Hence we can flatten it to obtain a plain list of integers:

flat : List(List(N)) → List(N)

If we start with the full cycle decomposition (including fixed points) we obtain a
permutation (in one-line representation) this way. For arbitrary decompositions
this is of little interest, but if we start with the CCD we get the following
proposition, which is helpful in enumeration problems related to permutations.

Proposition
The map CCD ◦ flat is a bijection on Sn.



Questions 51

Exercise
Prove that CCD ◦ flat is indeed a bijection.

Exercise
What are the fixed points of this bijection?

Exercise
How about RCCD ◦ flat?



Algebraic Decomposition 52

Since permutations are functions we can compose them by ordinary functional
composition f ◦ g. In this section, we write composition in diagrammatic form:

(f ◦ g)(x) = g(f(x))

Some (misguided) texts use the opposite convention. Unfortunately, they are
currently the vast majority.

Basis Problem:
Find a small and/or simple set of permutations so that all permutations can be
written as a product of these.

Decomposition Problem:
Given such a basis B, find a way to decompose a given permutations into a
product of permutations in B.



Transpositions 53

Definition
A transposition is a permutation that consists of a single 2-cycle.

In cycle notation, transpositions are exactly the permutations of the form (a, b)
for a ̸= b.

Example
Consider the following transpositions over [3], given in cycle notation.

(1, 2) ◦ (2, 3) = [3, 1, 2]
(2, 3) ◦ (1, 2) = [2, 3, 1]

Thus, composition of permutations is not commutative (it is associative,
though, since composition of functions is so associative).



In Pictures 54

1
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1
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1
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1
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(1, 2) ◦ (2, 3) = [3, 1, 2] (2, 3) ◦ (1, 2) = [2, 3, 1]

In cycle notation, the two composite permutations are each represented by a
3-cycle: (1, 3, 2) and (1, 2, 3).



Basis Theorem 55

Lemma
Every permutation can be written as a product of transpositions.

Proof. (sketch)
Since every permutation is composed of disjoint cycles, it suffices to show that
every cycle (a1, . . . , am) is a product of transpositions.
Show this by induction on m ≥ 2. The crucial step is

(am, b) ◦ (a1, . . . , am) = (a1, a2, . . . , am−1, am, b)

2

Exercise
Fill in all the gaps in this argument.

Exercise
Find a direct decomposition
(a1, b1) ◦ (a2, b2) ◦ . . . ◦ (am, bm) = (c1, c2, . . . , cm, cm+1).



In Pictures 56

For a simple cycle this is easy to see in the composition picture.
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Another Easy Case 57

Here is another simple decomposition of a cycle intro transpositions.

1

2

3

4

5

1

2

3

4

5

So (1, 2)(2, 3)(3, 4)(4, 5) = (5, 4, 3, 2, 1).



More Pictures 58

A more complicated permutation on n = 12, and its decomposition into
transpositions.
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Exercise
Find an algorithm to generate the picture on the right.



More Identities 59

For the next proposition, we abuse notation and use exponents for
permutations given in cycle notation.

Proposition

(a, b) ◦ (b, c) ◦ (a, b) = (a, c)

(1, . . . , n)i ◦ (1, 2) ◦ (n, . . . , 1)i = (i + 1, i + 2)

where 0 ≤ i ≤ n − 2.

Exercise
Prove these identities.



Even and Odd Permutations 60

Needless to say, the decomposition into transpositions is not unique.

Definition
A permutation is even if it can be written as the product of on even number of
transpositions, and odd if it can be written as the product of on odd number of
transpositions.

Note the cautious wording: this does not say that every permutation is either
even or odd. It leaves open the possibility that some permutation could be
both even and odd. However, one can show that any permutation is either
even or odd, never both.

Lemma
No permutation is even and odd.



Proof Sketch 61

Let σ be a permutation of [n]. Consider the polynomials

P (x1, . . . , xn) =
∏
i<j

xi − xj

Pσ(x1, . . . , xn) =
∏
i<j

xσ(i) − xσ(j)

Then necessarily P = ±Pσ. But then P = +Pσ iff σ is even, and P = −Pσ iff
σ is odd. 2

Note that we are essentially using σ to permute the variables here.

Exercise
Fill in the details of this argument.



Alternating Groups 62

The composition of even permutations is again even, so we can assemble them
into a new group.

Definition
The collection of all even permutations of A, an n-element set, is the
alternating group on n points.
Notation: An ⊆ Sn.

Example
In one-line notation, A4 has the following elements:

1, 2, 3, 4 1, 3, 4, 2 1, 4, 2, 3 2, 1, 4, 3 2, 3, 1, 4 2, 4, 3, 1
3, 1, 2, 4 3, 2, 4, 1 3, 4, 1, 2 4, 1, 3, 2 4, 2, 1, 3 4, 3, 2, 1

One can show that An has size n!/2 in general.

Part of the importance of alternating groups comes from the fact that for
n ≥ 5 each alternating group An is simple: it has only trivial normal subgroups.



Computing the Inverse 63

Definition
The order of a permutation f is the least m > 0 such that fm = I.

Lemma
Let the cycles of permutation f have lengths l1, . . . , lk and let m be the LCM
of l1, . . . , lk . Then m is the order of f .

This has the consequence that

f−1 = fm−1.

Hence we can compute the inverse by fast iteration when the carrier set is
finite. Of course, this does not work in the infinite case.

Needless to say, no one would actually compute the inverse this way.



Really Computing the Inverse 64

Here is a computationally better way to get at the inverse. Define g by

g(f(i)) = i for i = 1, . . . , n.

Then g ◦ f = f ◦ g = I and thus g = f−1. This takes linear time.

Here is another, computationally dubious, way: sort the list of pairs(
(f(1), 1), (f(2), 2), . . . , (f(n), n)

)
in the usual lexicographic order. Then throw away the first components. The
resulting permutation is f−1.

Exercise
Explain how the last method works. What is the running time?
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Implementing Groups 66

So how do we actually compute in a group? Let’s first focus on the finite case,
for which there always is a brute-force solution – at least in principle.

Definition
Given a finite group G = ⟨G, ∗⟩ the Cayley table or multiplication table of G is
an G by G matrix with entries in G: the entry in position (a, b) is a ∗ b.

It is usually safe to assume that the group elements are represented by integers,
so the size of the Cayley table is Θ(n2) using a uniform cost function.
That’s OK for small n but not for larger ones.
More importantly, Cayley tables tend to shed little light on the structure of the
group, all you have is a pile of data.



Small Groups 67

n = 1: trivial group {1}

n = 2: Z2
1 a
a 1

n = 3: Z3
1 a b
a b 1
b 1 a



n = 4 68

Z4
1 a b c
a b c 1
b c 1 a
c 1 a b

Kleinsche Vierergruppe
1 a b c
a 1 c b
b c 1 a
c b a 1



n = 5, 6 69

n = 5: Z5

n = 6: Z6, S3

n = 7: Z7

n = 8: 5 groups

It gets to be a bit tedious to write down these Cayley tables. Here is a count of
the number of finite groups of size n for n ≤ 60.
Note that the outliers at n = 32 and n = 48.



Counting Finite Groups 70
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Cyclic Groups 71

A group G is cyclic if there is some element a ∈ G such that

G = { ai | i ∈ Z }

In this case a is called a generator.

If G is a finite cyclic group we have

G = { ai | 0 ≤ i < k }

where k is the order of a (which is the size of G).

Note that in any finite group G and for any a ∈ G the subgroup
{ ai | 0 ≤ i < k } is cyclic (with generator a).



Cyclic Groups are Boring 72

Up to isomorphism there is only one cyclic group of order k, and it is
isomorphic to ⟨Zk, +, 0⟩. A generator is 1.

Note that there are other generators, though: ℓ is a generator iff gcd(ℓ, k) = 1.

All cyclic groups are commutative.



Multiplicative Subgroup 73

Recall

Z⋆
m = { x < m | gcd(x, m) = 1 }

Example
Here is the Cayley table for Z⋆

20.

1 3 7 9 11 13 17 19
3 9 1 7 13 19 11 17
7 1 9 3 17 11 19 13
9 7 3 1 19 17 13 11

11 13 17 19 1 3 7 9
13 19 11 17 3 9 1 7
17 11 19 13 7 1 9 3
19 17 13 11 9 7 3 1

Note the subgroup {1, 3, 7, 9} in the top-left corner.



Dihedral Groups 74

There are important groups resulting from symmetries of regular n-gons. For
example, consider the square with four vertices in positions (±1, ±1).

What are the rigid motions of the plane that leave the square unchanged in the
sense that they place the square on top of itself?



Dihedral Groups, II 75

Your geometric intuition should tell you the following:
The motions that leave the square unchanged are precisely:

Rotations around the origin by multiples of π/2
Including the identity, there are 4 of these.

Reflections along the axes and diagonals.
There are 4 of these.

But note that the π/2 rotation has to be applied 4 times to move the square
back to its original configuration.

The reflections need to be applied only twice.



Dihedral Groups, III 76

These motions naturally form a group: composition of motions is associative,
the identity motion is admissible, every motion is reversible, and the
composition of two admissible motions is again admissible.

This group is called a dihedral group D4.

If we replace the square by a regular n-gon we obtain Dn: a group consisting
of n rotations and n reflections.

Another tempting generalization is to 3-dimensional space (replace square by
cube), but we won’t pursue this here.



Pentagon 77

The symmetries of a pentagon, given by D5.



An Isomorphism 78

Proposition
The symmetric group on 3 points is isomorphic to the dihedral group D3.

Proof.
First note that both groups have size 6, so there is a chance the claim might be
correct.
The permutations f = (1, 2) and g = (1, 2, 3) (in cycle notation) generate S3,
so we only need to find their counterparts in D3.
f corresponds to a reflection and g corresponds to a rotation.

2

Exercise
Check the details in the last argument. Why can this line of reasoning not be
used to show that Sn is isomorphic to Dn in general?



Kleinsche Vierergruppe 79

How about the symmetries of a rectangle?

By visual inspection, there are only
two reflections, say, a and b. Clearly,
a2 = b2 = 1 and ab = ba, so the whole
group is just

V = {1, a, b, ab}

A better representation is 2 × 2 with
addition modulo 2 (or bitwise xor).
Since the group is Abelian, we can
write {00, 01, 10, 11}.



Application: Peg Solitaire 80

The game of (peg) solitaire uses pebbles on a board such as the following one
(English version):

The goal is to “jump-over-and-remove-pebbles” until only one in the middle
remains.



Brutal Problem 81

It is far from clear that this is even possible–it is for this board, but not for
others. A mostly brute-force computational attack succeeds, but does require
some cleverness (use of symmetries).

A weak solution is any sequence of moves that leaves just one pebble,
somewhere on the board. A strong solution leaves the pebble in the center.

Challenge: Show that any weak solution can be turned into a
strong solution by changing just one move.

Think about this a bit, it seems impossibly hard: we have no idea what the
space of all weak/strong solutions looks like.



Klein to the Rescue 82

Label the squares s of the board with elements of the Kleinsche Vierergruppe,
vs ∈ {01, 10, 11}, as follows:

green⇝ 01
red⇝ 10

blue⇝ 11

Note that three consecutive squares, either vertically or horizontally, are always
labeled by distinct elements.



So What? 83

Indicate presence or absence of a pebble on square s by a Boolean variable bs

and define the value of the corresponding configuration to be∑
s

bsvs

The value of the whole board is 00, so if we remove the center pebble, the
mutilated board has 11 = −11.

Claim: Any single move does not change the board value.

x y 00⇝ 00 00 z where z = x + y



Done! 84

In the end, only one pebble in a blue position can be left over. Even better: by
symmetry, there can only be 5 possible solutions:

But each one of these can be reached iff all the others can: use symmetry, or
change the last move.
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Subgroups 86

Definition
Consider a group ⟨A, ·⟩ . A subgroup of A is a set B ⊆ A such that ⟨B, ⊙⟩ is a
group, where ⊙ is the restriction of · to B.

This is always written ⟨B, ·⟩ , no one bothers to distinguish between the full
group operation · and the restriction ⊙. Note, though, that the group
operation may be much easier to compute in the subgroup.

Example

⟨Q, +⟩ is a subgroup of ⟨R, +⟩ .

⟨Z, +⟩ is a subgroup of ⟨Q, +⟩ .

⟨2Z, +⟩ is a subgroup of ⟨Z, +⟩ .

{1} is the trivial subgroup of any group (written multiplicatively).



Testing Subgroups 87

Lemma
Let A be a group and ∅ ̸= B ⊆ A.
Then B is a subgroup of A if, and only if, x, y ∈ B implies x−1 · y ∈ B.
If the group is finite than it suffices that x, y ∈ B implies x · y ∈ B.

Proof.
The first part follows easily from the definition.

For the second part note that B must contain 1: as a finite semigroup B must
contain an idempotent, which must be the identity in A. The map

B → B, x 7→ b · x

is a permutation of B for each b ∈ B (injective implies surjective in the finite
case). But then for some x ∈ B: 1 = b · x so we have closure under inverses.

2



Homomorphisms 88

A map from one group to another is mostly interesting if it preserves structure.

Definition
Suppose G and H are groups. A function f : G → H is a (group)
homomorphism if

f(x · y) = f(x) ∗ f(y)

Here · is the operation in G, and ∗ the operation in H.
If the function f is in addition injective then it is an monomorphism.
If the function f is in addition surjective then it is an epimorphism.
If the function f is in addition bijective then it is an isomorphism.

Usually one simply writes f(xy) = f(x)f(y) and does not explicitly display the
two different group operations.



Basic Properties 89

Proposition
Let f : G → H be homomorphism.
Then f(1G) = 1H and f(x−1) = f(x)−1.

Example

f : G → H , f(x) = 1, is a homomorphism.
f : G → G , f(x) = x is an isomorphism.
f : Z → Zm , f(x) = x mod m is an epimorphism.
log : R+ → R is a isomorphism from ⟨R+, ·, 1⟩ to ⟨R, +, 0⟩.

As the last example show, one does not always want to identify isomorphic
groups. In fact, the whole purpose of logarithms is to translate multiplication
into addition.



Kernels 90

Definition
The kernel of a homomorphism f : G → H is defined as

ker f = { x ∈ G | f(x) = 1 }.

Hence
f(x) = f(y) ⇐⇒ y−1x ∈ ker f

This is slightly different from the kernel relations in combinatorics, but close
enough to warrant the same name.

Note that f is injective (a monomorphism) iff the kernel is trivial: ker f = 1.

Proposition
The kernel of a homomorphism is always a subgroup.



Cosets 91

We can push this a little bit further based on the last observation:

Definition
For any subgroup H ⊆ G and a ∈ G define the (left) coset of H by a as

aH = { ax | x ∈ H } ⊆ G

The number of such cosets is the index of H in G, written [G : H]. Right
cosets are defined in a similar manner.

Now consider any subgroup H ⊆ G and define a relation

x ∼H y :⇔ x−1y ∈ H

We claim that ∼H is an equivalence relation on G whose equivalence classes
are just the cosets aH.



Partition Size 92

Lemma
∼H is an equivalence relation on G, and the equivalence classes of ∼H all have
the same size |H|.

Proof.
Reflexivity follows from 1 ∈ H.
Symmetry since x−1y ∈ H implies (x−1y)−1 = y−1x ∈ H,
Transitivity since x−1y, y−1z ∈ H implies x−1z ∈ H.

For the second claim note that [x]∼ = xH.
But z 7→ xz is a bijection from H to xH. 2



Lagrange’s Theorem 93

Theorem (Lagrange 1771)
Let G be a finite group, and H any subgroup of G. Then |G| = |H| · [G : H].

In particular, |H| divides |G|.

Note how algebra produces a stronger result here: if we look at arbitrary
functions f : A → B then any equivalence relation arises as a kernel relation.
But if we consider groups and homomorphisms we get only very special
equivalence relations.
This restriction will turn out to be very helpful to answer various counting
problems.



Order 94

Let a ∈ G. We write ⟨a⟩ for the least subgroup of G containing a.

It is not hard to see that
⟨a⟩ = { ai | i ∈ Z }

If G is finite, we have ⟨a⟩ = { ai | i ≥ 1 }.

Definition
The cardinality of ⟨a⟩ is the order of a in G.



Application 95

It follows from Lagrange’s theorem that the order of any group element divides
the order (cardinality) of the whole group.
Hence for n = |G|, a ∈ G we have an = 1.

This provides a simple proof for the famous Euler-Fermat theorem.

Recall that Z⋆
m is the group of elements in Zm that have multiplicative inverses.

Also, φ(m) is Euler’s totient function: φ(m) = |Z⋆
m|.

Theorem (Euler-Fermat)
The order of a ∈ Z⋆

m divides φ(m).



Wurzelbrunft’s Idea 96

Write G/H for G/ ∼H , the collection of H cosets. Wurzelbrunft remembers
from algebra lecture that quotients are really only useful if they carry some
natural algebraic structure. He proposes to turn G/H into a group as follows:

aH ∗ bH := abH

and we get the Wurzelbrunft quotient group G/H. An example of this
construction are the modular numbers from above.

Since the group structure is inherited from G, this should be quite useful.

Right?



Wrong 97

For this to work we need to show that this multiplication is well-defined.
So let a ∼ a′ and b ∼ b′. We need

abH = a′b′H

But all the information we have is that a′ = ah1 and b′ = bh2, hi ∈ H.
H is a subgroup, so h2H = H, which produces

a′b′H = ah1bh2H = ah1bH

Alas, now we are stuck, we cannot get rid of the pesky h1.

As it turns out, there is no way to get around this problem: we need more than
just a plain subgroup. In fact, in a way, ordinary subgroups are not the right
notion of substructure in the case of groups, they don’t produce useful
quotients.



Normal Subgroups 98

Definition
A subgroup H of G is normal if for all x ∈ H, a ∈ G: axa−1 ∈ H.

In other words, a subgroup is normal if it is invariant under the conjugation
maps x 7→ axa−1. Equivalently, aH = Ha.

In a commutative group all subgroups are normal.
The trivial group 1 and G itself are always normal subgroups (groups that
have no other subgroups are called simple, a hugely important concept in
the classification of groups).
There are non-commutative groups where all subgroups are normal, but
that is a rare property.
The group of all translations in the plane is a normal subgroup of the
group of all rigid motions (translations plus rotations and reflections).



Fixing Wurzelbrunft 99

Now we can fix Wurzelbrunft’s argument: assume H is normal. Then

abH = aHb = ah1Hb = a′bH = a′bh2H = a′b′H

Definition
This group is called the quotient group of G modulo (the normal subgroup) H
and written G/H.

So where do we get normal subgroups?

Proposition
A subgroup H of G is normal iff it is the kernel of a homomorphism
f : G → G′ where G′ is some other group.



It’s a Group 100

To hammer this home: let f : G → G′ be a homomorphism and ∼ = ∼ker f the
equivalence relation induced by it. We can define a multiplication on the
equivalence classes of ∼ by setting

[x] ∗ [y] := [x y]

This is well-defined: let x ∼ x′ and y ∼ y′, then

f(xy) = f(x)f(y) = f(x′)f(y′) = f(x′y′),

so that [xy] = [x′y′]. It is not hard to see that this produces a group structure
on G/ ∼.



Example 1 101

Let G be the integers under addition and H = mZ. Then

x ∼ y ⇐⇒ y − x ∈ mZ
⇐⇒ x = y (mod m)

H is the kernel of the epimorphism x 7→ x mod m.



Example 2 102

Let G be the group of all permutations on [n]. Define

f(x) =
{

0 if x is even,
1 otherwise.

Then f is homomorphism from G to the additive group Z2.
The kernel of f is the subgroup

H = { x ∈ G | x even }

Note that |H| = |G|/2 = n!/2.



Example 3 103

Consider the multiplicative group

G = Z∗
13 = {1, 2, . . . , 12}

We one can check that H = {1, 3, 9} is a subgroup with cosets

H = {1, 3, 9}, 2H = {2, 5, 6}, 4H = {4, 10, 12}, 7H = {7, 8, 11}

The multiplication table for G/H written with canonical representatives is

1 2 4 7
2 4 7 1
4 7 1 2
7 1 2 4

and is isomorphic to the additive group Z4.



Decomposition of Homomorphisms 104

Lemma
Every homomorphism f : G → H can be written as f = ν ◦ ι where ν is an
epimorphism and ι is a monomorphism.

Proof.
Let K ⊆ G be the kernel of f , a normal subgroup. Define

ν : G → G/K x 7→ [x]
ι : G/K → H [x] 7→ f(x)

It is easy to check that these functions work. 2



Congruences 105

To obtain the quotient group G/H we need to factor by a special type of
equivalence relation.

Definition
Suppose G is a group and ∼ an equivalence relation on G. ∼ is a congruence if
for all x, y, x′, y′ ∈ G:

x ∼ x′, y ∼ y′ implies xy ∼ x′y′.

Again, congruences are very important since they make it possible to define a
group structure on the quotient set G/∼:

[x] · [y] = [x · y]



Congruences and Homomorphisms 106

Unfortunately, the equivalence relations ∼H for arbitrary subgroups H are not
congruences in general, we need normal subgroups for this to work.

Proposition
If H is a normal subgroup, then ∼H is a congruence.

Proposition
H is the kernel of a homomorphism f : G → G′ iff H is normal.

Exercise
Prove these propositions.



Example: Chinese Remainder 107

You know this already. E.g., let p and q be two distinct primes.

f : Z → Zp × Zq

f(x) = (x mod p, x mod q)

Then H = pq Z and the quotient is Z/(pqZ) = Zpq.

One can show that f is an epimorphism (this requires a little argument).
Hence Zpq is isomorphic to Zp × Zq.



So? 108

Hence we can either compute

with one number modulo pq, or
with two numbers, one modulo p and the other modulo q.

Zpq and Zp × Zq are isomorphic, but computationally there is a difference.
This can be exploited sometimes to fake high-precision computations with
small word sizes.

Also note that the correctness proof for RSA more or less requires the product
representation.



Cayley’s Theorem 109

Theorem (Cayley 1854)
Every group is isomorphic to a subgroup of a permutation group.

Proof. Let A = ⟨A, ·⟩ be a group, and let SA be the full permutation group
over A. Define a map

φ : A → SA

φ(a)(x) = x · a

Then φ is a homomorphism: φ(a · b) = φ(a) ◦ φ(b). Moreover, φ is mono: the
kernel is just 1 ∈ A. Hence, the range of φ is a subgroup of SA that is
isomorphic to A. 2

Note that this representation is not too helpful computationally: each
permutation in SA has the same size as A.



The Sign Homomorphism 110

Recall our proof of the fact that no permutation is both even and odd.
One way to explain (and make precise) what is going on there is to consider
the sign function from the group of all permutations

sg : Sn → {+1, −1}
sg(σ) = Pσ(x)/P (x)

where the operation on the right is ordinary multiplication. It is not hard to see
that sg is a homomorphism and the kernel of sg is exactly the collection of all
even permutations.

In other words, An is the kernel of the homomorphism sg.
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