
CDM
Closure Properties

Klaus Sutner

Carnegie Mellon University
Spring 2021

1 Nondeterministic Machines

2 Determinization

3 Closure Properties

Where Are We? 2

We have a definition of recognizable languages in terms of deterministic finite
automata (DFAs).

There are two killer apps for recognizable languages:

pattern matching
logical decision procedures

In order to get a better understanding of recognizable languages, it turns out
that other characterizations can be very useful, both from the theory
perspective as well as for the construction of algorithms.

Weak Model of Computation 3

We can think of finite state machines as a particularly weak model of
computation. It is then natural to ask basic questions about the model:

Is there closure under sequential composition?
Is there closure under parallel composition?

Alas, we only have acceptors so far giving maps Σ⋆ → 2, so sequential
composition makes no sense (we need transducers for that).

But parallel composition we can handle: we want to combine two machines
into a single one and run them in parallel. Intuitively, combining two finite
state machines should produce another finite state machine: we only need to
keep track of pairs of states.

Parallel Composition 4

Suppose we have two DFAs over Σ: Ai = ⟨Qi, Σ, δi; q0i, Fi⟩. To run the
machines in parallel we define a new DFA as follows:

Definition (Cartesian Product Automaton)

A1 × A2 = ⟨Q1 × Q2, Σ, δ1 × δ2; (q01, q02), F1 × F2⟩

where δ = δ1 × δ2 is defined by

δ((p, q), a) =
(
δ1(p, a), δ2(q, a)

)
So the computation of A1 × A2 on input x combines the two computations of
both machines on the same input.

Note |A1 × A2| = |A1||A2|, a potential problem.

The Languages 5

By our choice of acceptance condition we have

L(A1 × A2) = L1 ∩ L2

By changing the final states in the product, we can also get union and
complement:

union F = F1 × Q2 ∪ Q1 × F2

intersection F = F1 × F2

difference F = F1 × (Q2 − F2)

Closure 6

Here are some operations on languages that do not affect recognizability:

Boolean (union, intersection, complement)

concatenation, Kleene star

reversal

homomorphisms, inverse homomorphisms

Alas, it is difficult to establish some of these properties within the framework of
DFAs: the constructions of the corresponding machines become rather
complicated. We will exploit nondeterminism later for this purpose.

Effective Closure 7

Right now, our only hope to prove a closure result is to argue

Given DFAs Ai for recognizable languages Li, one can effectively
construct a new DFA A for L1 op L2.

So we have effective closure: there are algorithms that compute the appropriate
machines.

And, in many interesting cases, these algorithms for FSMs are in fact highly
efficient. Alas, not always, we need to introduce other types of finite state
machines to handle certain constructions.

Deciding Equivalence 8

We can now deal more intelligently with the Equivalence problem from last
time.

Problem: Equivalence
Instance: Two DFAs A1 and A2.
Question: Are the two machines equivalent?

Lemma
A1 and A2 are equivalent iff L(A1) − L(A2) = ∅ and L(A2) − L(A1) = ∅.

Note that the lemma yields a quadratic time algorithm. We will see a better
method later.

Deciding Inclusion 9

Observe that we actually are solving two instances of a closely related problem
here:

Problem: Inclusion
Instance: Two DFAs A1 and A2.
Question: Is L(A1) ⊆ L(A2)?

which problem can be handled by

Lemma
L(A1) ⊆ L(A2) iff L(A1) − L(A2) = ∅.

Note that for any class of languages Equivalence is decidable when Inclusion is
so decidable. However, the converse may be false – but it’s not so easy to
come up with an example.

Concatenation and Kleene Star 10

Definition
Given two languages L1, L2 ⊆ Σ⋆ their concatenation (or product) is defined by

L1 · L2 = { xy | x ∈ L1, y ∈ L2 }.

Let L be a language. The powers of L are the languages obtained by repeated
concatenation:

L0 = {ε}

Lk+1 = Lk · L

The Kleene star of L is the language

L⋆ = L0 ∪ L1 ∪ L2 . . . ∪ Ln ∪ . . .

Kleene star corresponds roughly to a while-loop or iteration.

Star Examples 11

Example
{a, b}⋆: all words over {a, b}

Example
{a, b}⋆{a}{a, b}⋆{a}{a, b}⋆: all words over {a, b} containing at least two a’s

Example
{ε, a, aa}{b, ba, baa}⋆: all words over {a, b} not containing a subword aaa

Example
{0, 1}{0, 1}⋆: all numbers in binary, with leading 0’s
{1}{0, 1}⋆ ∪ {0}: all numbers in binary, no leading 0’s

Concatenation Closure 12

Given DFAs Ai for recognizable languages Li, we want to construct a new
DFA A for L1 · L2. We need to split the string x = uv:

x = x1x2 . . . xk︸ ︷︷ ︸
u∈L1

xk+1 . . . xn︸ ︷︷ ︸
v∈L2

The problem is that we don’t know where to split: in general, there are
multiple prefixes u in L1, but not all corresponding suffixes v are in L2.

In our nondeterminism infused world it is tempting to “guess” when to split,
but DFAs cannot guess.

Pebbles 13

Here is a trick that sometimes helps to construct machines in particular with
lower bound arguments for state complexity. Assume we have some transition
system (not necessarily deterministic).

Initially, we place a few pebble on some states (typically initial states).

Under input a, a pebble on p multiplies and moves to all q such that
p

a−→ q. If there are no transitions with source p, the pebble dies.

Multiple pebbles on the same state coalesce into a single one.

We accept whenever a pebble appears in F .

Note: The movement of the set of all pebbles is perfectly deterministic.

So even when the given transition system is nondeterministic, this method
produces a deterministic machine.

Pebble Automaton for Concatenation 14

We start with one copy of DFA A1, the leader, and one copy of DFA A2, the
follower.

Place one pebble on the initial state of the leader machine.

Move the pebbles according to our standard rules.

Whenever the leader pebble reaches a final state, place a new pebble on
the initial state of the follower automaton.

The composite machine accepts if a pebble sits on final state in the fol-
lower machine.

Another way of thinking about the same construction is to have |A2| many
copies of the second DFA, each with just one pebble.

State Complexity 15

The number of states in the new DFA is bounded by

|A1| 2|A2|

since the A1 part is deterministic but the A2 part is not.

The states are of the form (p, P) where p ∈ Q1 and P ⊆ Q2, corresponding to
a complete record of the positions of all the pebbles.

Of course, the accessible part may well be smaller. Alas, in general the bound
is essentially tight.

Nondeterministic FSMs 16

Here is a straightforward generalization of DFAs that allows for
nondeterministic behavior. Recall that transition systems may well be
nondeterministic.

Definition (NFA)
A nondeterministic finite automaton (NFA) is a structure

A = ⟨Q, Σ, τ ; I, F ⟩

where ⟨Q, Σ, τ⟩ is a transition system and the acceptance condition is given by
I, F ⊆ Q, the initial and final states, respectively.

So in general there is no unique next state in an NFA: there may be no next
state, or there may be many. Of course, we can think of a DFA as a special
type of NFA.

Some authors insist that I = {q0}. This makes no sense.

Traces and Runs 17

It is straightforward to lift the definition of acceptance from DFAs to NFAs (it
all comes down to path existence, anyway).

Recall that in any transition system ⟨Q, Σ, τ⟩ a run is an alternating sequence

π = p0, a1, p1, . . . , ar, pr

where pi ∈ Q, ai ∈ Σ and τ(pi−1, ai, pi) for all i = 1, . . . , r . p0 is the source
of the run and pr its target. The length of π is r.
The corresponding trace or label is the word a1a2 . . . ar.

The Fatal Definition 18

The acceptance condition is essentially the same as for DFAs, except that
initial states are no longer unique (and even if they were, there could be
multiple traces).

Definition
An NFA A = ⟨Q, Σ, τ ; I, F ⟩ accepts a word w ∈ Σ⋆ if there is a run of A with
label w, source in I and target in F . We write L(A) for the acceptance
language of A.

But note that now there may be exponentially many runs with the same label.
In particular, some of the runs starting in I may end up in F , others may not.
There is a hidden existential quantifier here.
Again: all that is needed for acceptance is one accepting run, there may be
many runs that fail to lead to acceptance.

Sources of Nondeterminism 19

Note that nondeterminism can arise from two different sources:

Transition nondeterminism:
there are different transitions p

a−→ q and p
a−→ q′.

Initial state nondeterminism:
there are multiple initial states.

In other words, even if the transition relation is deterministic we obtain a
nondeterministic machine by allowing multiple initial states. Intuitively, this
second type of nondeterminism is less wild.

Autonomous Transitions Epsilon Moves 20

While we are at it: there is yet another natural generalization beyond just
nondeterminism: autonomous transitions, aka epsilon moves. These are
transitions where no symbol is read, only the state changes.

Definition
A nondeterministic finite automaton with ε-moves (NFAE) is defined like an
NFA, except that the transition relation has the format τ ⊆ Q × (Σ ∪ {ε}) × Q.

Thus, an NFAE may perform several transitions without scanning a symbol.

Hence a trace may now be longer than the corresponding input word. Other
than that, the acceptance condition is the same as for NFAs: there has to be
run from an initial state to a final state.

Σε 21

We will encounter several occasions where it is convenient to “enlarge” the
alphabet Σ by adding the empty word ε:

Σε = Σ ∪ {ε}

Of course, ε is not a new alphabet symbol. What’s really going on?
Σ freely generates the monoid Σ⋆, and ε is the unit element of this monoid.
We can add the unit element to the generators without changing the monoid.
We could even consider generalized finite state machines: allow
super-transitions like

p
aba−−→ q

Exercise
Explain why this makes no difference as far as languages are concerned.

Reversal Closure 22

Here is a perfect example of an operation that preserves recognizability, but is
difficult to capture within the confines of DFAs.
Let

Lop = { xop | x ∈ L }

be the reversal of a language, (x1x2 . . . xn−1xn)op = xnxn−1 . . . x2x1.

The direction in which we read a string should be of supreme irrelevance, so for
recognizable languages to form a reasonable class they should be closed under
reversal.

Suppose L is recognizable. How would we go about constructing a machine for
Lop?

Example: Third Symbol 23

It is very easy to build a DFA for La,3 = { x | x3 = a }.
We omit the sink to keep the diagram simple.

0 1 2 3
a, b a, b a

a, b

But Lop
a,3 = { x | x−3 = a } = La,−3 is somewhat hard for DFAs: we don’t

know how far from the end we are. Here is a perfectly legitimate NFA for this
language: we flip transitions and interchange initial and final states.

3 2 1 0
a

a, b

a, b a, b

It is clear that the new machine accepts La,−3.

The Problem: Is the acceptance language of an NFA still recognizable?

1 Nondeterministic Machines

2 Determinization

3 Closure Properties

Conversion to DFA 26

Our first order of business is to show that NFAs and NFAEs are no more
powerful than DFAs in the sense that they only accept recognizable languages.
Note, though, that the size of the machines may change in the conversion
process, so one needs to be a bit careful.

The transformation is effective: the key algorithms are

Epsilon Elimination Convert an NFAE into an equivalent NFA.

Determinization Convert an NFA into an equivalent DFA.

Terminology 27

As already mentioned, terminology for finite state machines is not settled, we
will use the following hierarchy:

DFA ⊆ PDFA ⊆ NFA ⊆ NFAE ⊆ GFA

The heart of the OO fanatic beats faster . . .

NFAE to NFA 28

Epsilon elimination is quite straightforward and can easily be handled in
polynomial time:

introduce new ordinary transitions that have the same effect as chains of
ε transitions, and

remove all ε-transitions.

Since there may be chains of ε-transitions this is in essence a transitive closure
problem. Hence part I of the algorithm can be handled with the usual graph
techniques.

ε-Closure 29

A transitive closure problem: we have to replace chains of transitions

a ε ε ε

by new transitions

a

a a

a

Epsilon Elimination 30

Theorem
For every NFAE there is an equivalent NFA.

Proof. This requires no new states, only a change in transitions.
Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is an NFAE for L. Let

A′ = ⟨Q, Σ, τ ′; I ′, F ⟩

where τ ′ is obtained from τ as on the last slide.
I ′ is the ε-closure of I: all states reachable from I using only ε-transitions. 2

Again, there may be quadratic blow-up in the number of transitions and it may
well be worth the effort to try to construct the NFAE in such a way that this
blow-up does not occur.

Determinization 31

In the realm of finite state machines, nondeterministic machines are no more
powerful than deterministic ones (this is also true for register/Turing machines,
but fails for pushdown automata).

Theorem (Rabin, Scott 1959)
For every NFA there is an equivalent DFA.

The idea is to keep track of the set of possible states the NFA could be in.
This produces a DFA whose states are sets of states of the original machine.

General Abstract Nonsense to the Rescue 32

τ ⊆ Q × Σ × Q

τ : Q × Σ × Q −→ 2

τ : Q × Σ −→ (Q −→ 2)

τ : Q × Σ −→ P(Q)

τ : P(Q) × Σ −→ P(Q)

The latter function can be interpreted as the transition function of a DFA on
P(Q). Done.

;-)

Proof of Rabin-Scott 33

Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is an NFA. Let

A′ = ⟨P(Q), Σ, δ; I, F ′⟩

where δ(P, a) = { q ∈ Q | ∃ p ∈ P τ(p, a, q) }
F ′ = { P ⊆ Q | P ∩ F ̸= ∅ }
It is straightforward to check by induction that A and A′ are equivalent. 2

The machine from the proof is the full power automaton of A, written
powf(A), a machine of size 2n.

Of course, for equivalence only the accessible part pow(A), the power
automaton of A, is required.

Accessible Part 34

This is as good a place as any to talk about “useless” states: states that cannot
appear in any accepting computation and that can therefore be eliminated.

Definition
A state p in a finite automaton A is accessible if there is a run with source an
initial state and target p. The automaton is accessible if all its states are.

Now suppose we remove all the inaccessible states from a automaton A
(meaning: adjust the transition system and the set of final states). We obtain
a new automaton A′, the so-called accessible part of A.

Lemma
The machines A and A′ are equivalent.

Coaccessible/Trim Part 35

There is a dual notion of coaccessibility: a state p is coaccessible if there is at
least one run from p to a final state. Likewise, an automaton is coaccessible if
all its states are.
An automaton is trim if it is accessible and coaccessible.

It is easy to see that the trim part of an automaton is equivalent to the whole
machine. Moreover, we can construct the coaccessible and trim part in linear
time using standard graph algorithms.

Warning: Note that the coaccessible part of a DFA may not be a DFA: the
machine may become incomplete and we wind up with a partial DFA. The
accessible part of a DFA always is a DFA, though.

Keeping Trim 36

In the RealWorldTM we would avoid the full power set at all costs: instead of
building a DFA over pow(Q) we would only construct the accessible
part—which may be exponentially smaller. There are really two separate issues
here.

First, we may need to clean up machines by running an accessible (or
trim) part algorithm whenever necessary–this is easy.

Much more interesting is to avoid the construction of inaccessible states
of a machine in the first place: ideally any algorithm should only produce
accessible machines.

While accessibility is easy to guarantee, coaccessibility is not: while
constructing a machine we do not usually know the set of final states ahead of
time. So, there may by need to eliminate non-coaccessible states.

Smart Power Automata 37

The right way to construct the Rabin-Scott automaton for A = ⟨Q, Σ, τ ; I, F ⟩
is to take a closure in the ambient set P(Q):

clos
(

I, (τa)a∈Σ

)
Here τa is the function P(Q) × Σ → P(Q) defined by

τa(P) = { q ∈ Q | ∃ p ∈ P (p a−→ q) }

This produces the accessible part only, and, with luck, is much smaller than the
full power automaton.

Virtual Graphs 38

Think of the labeled digraph

G = ⟨P(Q); τ1, τ2, . . . , τk ⟩

with edges p
a−→ q for τa(p) = q, the virtual graph or ambient graph where we

live. The graph is exponential in size, but we don’t need to construct it
explicitly.

We only need to compute the reachable part of I ∈ P(Q) in this graph G. This
can be done using standard algorithms such as Depth-First-Search or
Breadth-First-Search.

The only difference is that we are not given an adjacency list representation of
G: we compute edges on the fly. No problem at all.

This is very important when the ambient graph is huge: we may only need to
touch a small part.

Example: La,−3 39

Recall

La,k = { x ∈ {a, b}⋆ | xk = a }.

For negative k this means: −kth symbol from the end. It is trivial to construct
an NFA for La,−3:

0 1 2 3
a a, b a, b

a, b

Rabin-Scott 40

Applying the Rabin-Scott construction we obtain a machine with 8 states

{0}, {0, 1}, {0, 1, 2}, {0, 2}, {0, 1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 3}

where 1 is initial and 5, 6, 7, and 8 are final. The transitions are given by

1 2 3 4 5 6 7 8
a 2 3 5 7 5 7 3 2
b 1 4 6 8 6 8 4 1

Note that the full power set has size 16, our construction only builds the
accessible part (which happens to have size 8).

The Diagram 41

Here is the corresponding diagram, rendered in a particularly brilliant way. This
is a so-called de Bruijn graph (binary, rank 3).

aab abb

aaa aba bab bbb

baa bba

Exercise
Explain this picture in terms of the Rabin-Scott construction.

Example 42

Consider the product automaton for DFAs Aaa and Abb, accepting aa and bb,
respectively.

Aaa:

0 1 2

⊥

a a

a, bb
b

a, b

Full Product Automaton 43

00 01 02 0⊥

10 11 12 1⊥

20 21 22 2⊥

⊥0 ⊥1 ⊥2 ⊥⊥

a a a a

a a a a

a a a, b
a, b

a
a

a, b

b b b

b

b b b b

b b

b b

a, b

The Accessible Part 44

00

1⊥

2⊥

⊥1 ⊥2 ⊥⊥

01 02 0⊥

10 11 12

20 21 22

⊥0

a

a
b

b

a, b

a, b

b

a

a, b

a a a

a a a

a a a, b

a

b b

b

b b b

b b

b

Acceptance Testing 45

Recall one of the key applications of FSMs: acceptance testing is very fast and
can be used to deal with pattern matching problems.

How much of a computational hit do we take when we switch to
nondeterministic machines?

We can use the same approach as in determinization: instead of computing all
possible sets of states reachable from I, we only compute the ones that
actually occur along a particular trace given by some input word.

Membership Testing 46

Here is a natural modification of the DFA acceptance testing program.

P = I; // set of ints
while(a = x.next()) // next input symbol

P = tau_a(P);

return (P intersect F != empty);

The update step uses the maps τa : P(Q) → P(Q) from above.

Exercise
Think of dirty tricks like hashing to speed things up.

Running Time 47

The loop executes |x| times, just as with DFAs.

Unfortunately, the loop body is no longer constant time: we have to up-
date a set of states P ⊆ Q.

This can certainly be done in O(|Q|2) steps though smart data structures
may sometimes give better performance.

Actually, it seems that in practice (i.e. in NFAs that appear naturally in
some application such as pattern matching) one often deals with overhead
that is linear in |Q| rather than quadratic.

At any rate, we can check acceptance in an NFA in O(|x||Q|2) steps. For
fixed machines this is still linear in x, but the hidden constant may be
significantly worse than in a DFA.

A Better Mousetrap? 48

Acceptance testing is slower, nondeterministic machines are not simply
all-round superior to DFAs.

Advantages:
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks:
Acceptance testing slower.
Sometimes algorithms more complicated.

Which type of machine to choose in a particular application can be a hard
question, there is no easy general answer.

1 Nondeterministic Machines

2 Determinization

3 Closure Properties

Basic Operations 50

Suppose we have two NFAs over Σ: Ai = ⟨Qi, τi; Ii, Fi⟩. We may safely
assume that the state sets are disjoint. There are two simple operations the
combine the computations of both machines:

Sum Automaton

A1 + A2 = ⟨Q1 ∪ Q2, τ1 ∪ τ2; I1 ∪ I2, F1 ∪ F2⟩.

Cartesian Product Automaton

A1 × A2 = ⟨Q1 × Q2, τ1 × τ2; I1 × I2, F1 × F2⟩

In the product construction

((p, q), a, (p′, q′)) ∈ τ1 × τ2 ⇐⇒ τ1(p, a, p′) ∧ τ2(q, a, q′)

Computations 51

Clearly, the computations of A1 + A2 are exactly the union of the
computations of A1 and A2.
The size of the sum automaton is linear in the size of the components.

The computations of A1 × A2 are the computations of A1 combined with the
computations of A2 provided both have the same label: essentially, we are
running both machines in parallel.

A real implementation will only construct the accessible part, but still, the size
of A1 × A2 is potentially quadratic in the sizes of A1 and A2. This causes
problems if a product machine construction is used repeatedly.

The Languages 52

By our choice of acceptance condition we have

L(A1 + A2) = L1 ∪ L2

L(A1 × A2) = L1 ∩ L2

By changing the final states in the product, we can also get union:

union F = F1 × Q2 ∪ Q1 × F2

intersection F = F1 × F2

Why bother with a quadratic product for union when we can get it cheaper
from a linear sum?

Dire Warning 53

It is tempting to try to use

F = F1 × (Q2 − F2)

to obtain complements L(A1) − L(A2).

This works for DFAs, but not for NFAs. Determinism is essential here, we will
see shortly that complementation for nondeterministic machines is much
harder.

Exercise
Construct a counterexample that shows that the switch-final-states construction
in general fails to produce complements in NFAs, even in trim ones.

Concatenation via NFAE 54

Suppose we have two NFAs A1 and A2 for L1 and L2. To build a machine for
L1 · L2 it is easiest to go with an NFAE A:

Let Q = Q1 ∪ Q2 disjoint, keep all the old transitions and add ε-transitions
from F1 to I2. I1 are the initial states and F2 the final states in A.

It is clear that L(A) = L1 · L2. But note that this construction may introduce
quadratically many transitions.

Exercise
Find a way to keep the number of new transitions linear.

Homomorphisms 55

Definition
A homomorphism is a map f : Σ⋆ → Γ ⋆ such that

f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn)

where xi ∈ Σ. In particular f(ε) = ε.

Note that a homomorphism can be represented by a finite table: we only need
f(a) ∈ Γ ⋆ for all a ∈ Σ.

Given a homomorphism f : Σ⋆ → Γ ⋆ and languages L ⊆ Σ⋆ and K ⊆ Γ ⋆ we
are interested in the languages

image f(L) = { f(x) | x ∈ L }
inverse image f−1(K) = { x | f(x) ∈ K }

Closure under Homomorphisms 56

Lemma
Regular languages are closed under homomorphisms and inverse
homomorphisms.

Proof.
Let f : Σ⋆ → Γ ⋆ be a homomorphism.
Say, we have a DFA A for K ⊆ Γ ⋆. Replace the labels of the transitions as
follows

p
a−→ q ⇝ p

f(a)−→ q

This produces a GFA over Σ that accepts f−1(K).

For the opposite direction, given a regular expression α for L ⊆ Σ⋆, replace all
letters a by f(a). This produces a regular expression for f(L).

2

Substitutions 57

We can push the last result a little further: we could consider regular
substitutions, maps obtained from a lookup table

f(a) = Ka ⊆ Γ ⋆

where Ka is a whole regular language, rather than just a single word. As
before, f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn) ⊆ Γ ⋆ and we set

f(L) =
⋃
x∈L

f(x)

Lemma
Regular languages are closed under regular substitutions and inverse regular
substitutions.

Exercises 58

Exercise
Carry out the concatenation pebble construction for the languages
Ea = even number of a’s and Eb = even number of b’s and run some
examples.

Exercise
Carry out a pebbling construction for Kleene star.

Exercise
How would a pebbling construction work when the given machine(s) are
NFAEs?

State Complexity of Operations 59

DFA NFA

intersection mn mn

union mn m + n

concatenation (m − 1)2n − 1 m + n

Kleene star 3 · 2n−2 n + 1

reversal 2n n

complement n 2n

Worst case blow-up starting from machine(s) of size m, n and applying the
corresponding operation (accessible part only).

Note that we are only dealing the state complexity, not transition complexity
(which is arguably a better measure for NFAs).

Example: Intersection 60

The “mod-counter” language

Ka,m = { x ∈ 2⋆ | #ax = 0 (mod m) }

clearly has state complexity m. Similarly, the intersection of K0,m and K1,n

has state complexity mn.

Again: Decision Problems 61

Problem: Emptiness Problem
Instance: A regular language L.
Question: Is L empty?

Problem: Finiteness Problem
Instance: A regular language L.
Question: Is L finite?

Problem: Universality Problem
Instance: A regular language L.
Question: Is L = Σ⋆?

Machine Types 62

For DFAs these problems are all easily handled in linear time using
depth-first-search.

As far as decidability is concerned there is no difference between DFAs and
NFAs: we can simply convert the NFA.

But the determinization may be exponential, so efficiency becomes a problem.

Emptiness and Finiteness are easily polynomial time for NFAs.

Universality is PSPACE-complete for NFAs.

More Problems 63

Problem: Equality Problem
Instance: Two regular languages L1 and L2.
Question: Is L1 equal to L2?

Problem: Inclusion Problem
Instance: Two regular languages L1 and L2.
Question: Is L1 a subset of L2?

Inclusion is PSPACE-complete for NFAs.

Equality is PSPACE-complete for NFAs.

Large Product Machines 64

Suppose we have a list of m DFAs Ai of size ni, respectively.

Then the full product machine

A = A1 × A2 × . . . × Am−1 × Am

has n = n1n2 . . . ns states.

The full product machine grows exponentially, but its accessible part may
be much smaller.

Alas, there are cases where exponential blow-up cannot be avoided.

Bad News: DFA Intersection 65

Here is the Emptiness Problem for a list of DFAs rather than just a single
machine:

Problem: DFA Intersection
Instance: A list A1, . . . , An of DFAs
Question: Is

⋂
L(Ai) empty?

This is easily decidable: we can check Emptiness on the product machine
A =

∏
Ai. The Emptiness algorithm is linear, but it is linear in the size of A,

which is itself exponential. And, there is no universal fix for this:

Theorem
The DFA Intersection Problem is PSPACE-hard.

	Nondeterministic Machines
	Determinization
	Closure Properties

