
CDM
Memoryless Machines

Klaus Sutner

Carnegie Mellon University
Spring 2023

1 Zero Space

2 Finite State Machines

3 DFA Decision Problems

Getting Real 2

So far, we have blissfully ignored physical limitations. For example, we pretend
that our registers can hold arbitrarily large naturals, and increment/decrement
them in one step.

We could avoid this by limiting the registers to k-bit numbers for some fixed k,
say, k = 64. So we wind up with a particularly bad assembly language.

In our model, this has an unintended side-effect: there are only finitely many
possible inputs (recall: the input has to be written into registers).

Alas, from the perspective of computability and even standard complexity,
finite problems are utterly trivial.

Everything is Decidable 3

Claim: Every finite decision problem is decidable in constant time (albeit for
entirely the wrong reasons).

More precisely, we can simply hardwire a lookup table that lists the correct
answer for each instance.

For example, this RM accepts {1, 3, 6, 7}.

// X --> Y
0: dec X 1 9 5: dec X 6 9
1: dec X 2 8 6: dec X 7 8
2: dec X 3 9 7: dec X 8 8
3: dec X 4 8 8: inc Y 9
4: dec X 5 9 9: halt

Worthless 4

This is perfectly correct, but completely useless. We would very much like to
distinguish obviously different levels of difficulty. Think about a finite set of
instances I, say, all 1000 bit numbers.

Y1 all numbers in I divisible by 17.
Y2 all prime numbers in I.
Y2 all x ∈ I such that {x}() ↓.

Clearly, these problem are listed in order of increasing complexity, the first one
is nearly trivial, the second requires a bit of work and the last one is a hot
mess. We will return to this problem when we talk about Kolmogorov-Chaitin
complexity.

Infinite Problems 5

Convention: For the time being, we will insists that all our
problems have infinite instance sets.

We could get around the problem of not being able to write arbitrarily large
numbers into a k-bit register by reading the input in k-bit blocks, say, starting
with the least significant digits. This is perfectly reasonable from an
algorithmic point of view.

Unfortunately, this means we have to increase the instruction set of our
machine: we need some read instruction and we need to be able to test
whether the input is complete.

This is doable, but not really worth the effort. It is better to switch to Turing
machines where this particular type of skulduggery is a bit more natural.

Forget Registers 6

Once we think about the input as a sequence of letters, it makes little sense to
insist that the rest of the machine should be based on arithmetic.

The only thing that really matters is that a k-bit register machine
can only assume finitely many internal states.

Recall our configurations (p, z) where p < n and the zi are all k-bit. Clearly
there are only finitely many possibilities.

How does this machine compute? Given a state, it reads another letter off the
input and changes to a new state. That’s all. To describe it, we can use a
lookup table for each internal state and input letter.

Memory Constraints 7

So our new machines take infinitely many inputs, but they have no internal
memory besides the state they are in. For example, they cannot remember the
sequence of states that occurs during a computation.

We could relax this requirement and allow the machine to use some amount of
memory depending on the size of the input. Say, on input of size n we are
allowed to use s(n) extra memory (s for space). This is exactly what real
algorithms do and leads to much more powerful types of computation than our
devices.

Note that s(n) = O(n) is usually fine, but s(n) = O(n2) can already get quite
tricky (as opposed to running time).

For s(n) = 0 we get Zero Space.

Confession 8

This is one of the occasions where Turing machines are better: historically,
finite state machines were defined in terms of highly restricted Turing
machines—register machines just don’t work as well in this situation.

So how would we dumb down a Turing machine to make sure it performs only
highly feasible computations?

Taming Turing Machines 9

The central problem with general Turing machines is that we have no way of
predicting the amount of tape used during a computation—which could be
used to also obtain a bound on the length of the computation, albeit it an
exponential one.

So how about simply imposing a bound on the amount of tape that the
machine may use? If the machine attempts to use more tape, the computation
simply fails.

A fairly natural restriction would be to allow only as much tape as the input
takes up originally: think of two special end markers

#x1x2 . . . xn−1xn#

where the head is originally positioned at the first symbol of x. The head is not
allowed to move beyond the two cells marked #.

Linear Bounded Automata 10

This leads to an important class of machines: linear bounded automata (LBA)
and the corresponding class SPACE(n) of problems solvable in linear space;
introduced in their deterministic form in 1960 by Myhill, and in their full
nondeterministic form in 1964 by Kuroda.

Unfortunately, LBAs are still much too powerful and complicated. E.g.,
nondeterministic LBAs can accept every context-sensitive language.

Ominously, the question whether the languages of nondeterministic LBAs are
closed under complement was open for three decades before being answered
affirmatively by Immerman and Szelepcsényi independently.

We need a more stringent condition, something more restrictive than just linear
space.

Better Turing Machines 11

We can get better control by separating the input from the workspace.

M

10100
input tape

work tape

aba acab a

qY

qN

A Turing machine acceptor with separate, read-only input tape.

Space Complexity 12

Suppose the input has length n, some arbitrarily large number.

We can then impose a bound on the size of the worktape, some function s(n)
that limits the amount of memory available for the computation.

Popular choices for s(n) are n and log n. Sublinear space complexity is quite
interesting, as opposed to sublinear time complexity.

We will be a bit more radical, we go for s(n) = 0: Zero Space.

Little Space 13

One might suspect that we get less and less compute power as we decrease the
memory-size function s(n), say, to log n, log log n, log log log n, and so on.

Here is a major surprise:

Theorem (Hartmanis, Lewis, Stearns 1965)
Suppose some decision problem is not solvable in constant space. Then every
Turing machine solving the problem requires space Ω(log log n) infinitely often.

Hence, once we get to s(n) = o(log log n) we might as well have a worktape of
fixed size. The proof is somewhat complicated, see Hartmanis Eal.

http://www.cs.cmu.edu/~cdm/resources/HartmanisLewisStearns65.pdf

From Fixed to None 14

But allowing only a constant amount of work tape is already equivalent to
allowing no work tape at all: there are only finitely many possible work tape
contents and head positions.

We can simply inflate the number of states and think of these finitely many
worktape configurations as part of the finite state control, something like
Q × Γ k.

In other words, we simply hide the fixed size tape inside the control unit of the
Turing machine and, voila, we get Zero Space.

No Memory 15

M

10100
input tape

qY

qN

A zero space machine.

Left-To-Right 16

One might think that allowing the read-head to move left and right (so that
parts of the input can be read repeatedly) would improve the performance of
our devices.

As it turns out, one can assume without loss of generality that the read head
only moves from left to right: at each step one symbol is scanned and then the
head moves right and never returns.

Theorem (Rabin/Scott, Shepherdson)
Every decision problem solved by a constant space two-way machine can
already be solved by a constant space one-way machine.

The proof of this result is quite messy, we won’t go into details. Unsurprisingly,
the one-way version has more internal states. See Rabin/Scott 59.

http://www.cs.cmu.edu/~cdm/resources/RabinScott59.pdf

Simplified Configurations 17

Note that configurations for these restricted Turing machines are simpler than
in the general case, all we need is

p x p ∈ Q, x ∈ Σ⋆

where x is the part of the tape to the right of the head: there is no need to
keep track of the left part of the tape, we can never go back there.

One step in the computation is then given by a map δ, the so-called transition
function, where

p ax M

1
q x ⇐⇒ δ(p, a) = q

Example: Parity and Majority 18

Let’s suppose the input is given as a bit sequence x = x1x2 . . . xn−1xn. Here
are two classical problems concerning these sequences:

Parity: Is the number of 1-bits in x even?

Majority: Are there more 1-bits than 0-bits in x?

Parity can easily be handled without memory: just add the bits in x modulo 2.

On the other hand, Majority seems to require an integer counter of unbounded
size log n bits; we will see in a while that Majority indeed cannot be solved in
zero space.

Parity Checker 19

s = 0;

while(there is another input bit b)
s = b xor s;

return s;

This really computes the exclusive-or of all the bits, which happens to be the
right answer:

s = x1 ⊕ x2 ⊕ . . . ⊕ xn−1 ⊕ xn

Streaming Algorithms 20

So this is an extremely simple case of a streaming algorithm, then number of
scans is just 1 and the memory is constant (as opposed to small number of
scans, little memory).

initialize;

while(there is another input letter x)
process x; // state transition

return answer;

The point is that the state transition is extremely fast, typically using a lookup
table, or evaluating a simple function.

Transition Diagrams 21

A most useful representation for our parity checker is a diagram:

e o

1

1

0 0

The edges are labeled by the input bits, and the nodes indicate the internal
state of the checker (called e and o for clarity, these are the two internal
states).

This pictures are very easy to read and interpret for humans (and useless as
input to algorithms).

Complete Information 22

It is customary to indicate the initial state (where all computations start) by a
sourceless arrow, and the so-called final states states (corresponding to answer
Yes) by marking the nodes.

e o

1

1

0 0

In this case state e is both initial and final.

“Final state” is another example of bad terminology, something like “accepting
state” would be better. Alas . . .

Another Example 23

0 1 2 3
b b b

a a a a, b

There are 4 states {0, 1, 2, 3}. Input x ∈ {a, b}⋆ will take us from state 0 to
state 3 if, and only if, it contains at least 3 letters b.

The “correctness proof” here consists of staring at the picture for a moment.

Run-Length Limited Codes 24

Consider all words over {a, b} that start and end with a and have the property
that all as are separated by 1, 2 or 3 bs.

i 0 1 2 3
a

b b b

a
a

a

We allow missing transitions: if the machine reads b in state i it simply
“crashes” (see the formal definition of acceptance below). As a practical
matter, partial transition functions are critical for efficiency.

Correctness is by diagram chasing. Note that the informal description above
does not explain whether the first and last a need to be distinct. Deal with the
other case.

Checking Small Divisors 25

A typical primality testing algorithm starts very modestly by making sure that
the given candidate number x is not divisible by small primes, say, 2, 3, 5, 7,
and 11 (actually, checking the first 100 or so primes seems to be more realistic
in practice).

Assume n has 1000 bits. Using standard large integer library to do the tests is
not really a good idea, we want a very fast method to eliminate lots of bad
candidates quickly.

One could hardwire the division algorithm for a small divisor d but even that’s
still clumsy.

Can we use one of our memoryless machines?

Mod 5 Base 2 26

8-bit binary numbers that are divisible by 5 (written here in columns, LSD on
top).
There is some regularity in the bit patterns, but it’s elusive.

We need a machine that accepts these bit pattern, but rejects all others. And,
of course, works for an arbitrary number of bits.

Induction to the Rescue 27

Write ν(x) for the numerical value of bit-sequence x, assuming the MSD is
read first.

Then

ν(x0) = 2 · ν(x)

ν(x1) = 2 · ν(x) + 1

So if we are interested in divisibility by, say, d = 5 we have

ν(xa) = 2 · ν(x) + a (mod 5)

Since we only need to keep track of remainders modulo 5 there are only 5
values, corresponding to 5 internal states of the loop body.

Remainders Mod 5 28

0

1

2

3

4

0

1

0
1

0 1

0

1

0

1

Optimality in Time 29

Lower bound arguments are often tricky, but this really is the fastest possible
algorithm for divisibility by 5 as can be seen by an adversary argument.

Suppose there is an algorithm that takes less than n steps.

Then this algorithm cannot look at all the bits in the input, so it will not notice
a single bit change in at least one particular place.

But that cannot possibly work, every single bit change in a binary number
affects divisibility by 5:

x ± 2k ̸= x (mod 5)

for any k ≥ 0.

1 Zero Space

2 Finite State Machines

3 DFA Decision Problems

The Machine Perspective 31

We can think of our devices as consisting of two parts:

a transition system, and
an acceptance condition.

The transition system includes the states and the alphabet and can be
construed as a labeled digraph.

Definition
A transition system or semi-automaton (SA) is a structure

⟨Q, Σ, δ⟩

where Q and Σ are finite sets and δ ⊆ Q × Σ × Q.

The elements of δ are transitions and often written suggestively as p
a−→ q.

Sequences, Words, Strings 32

It is customary to refer to the input sequences as words or strings.

Given an alphabet Σ one writes Σ⋆ for the collection of all words over Σ, and
Σ+ for the collection of all non-empty words.

In practice, the alphabet is usually one of

2 = {0, 1} (2)
{0, 1, . . . , 9} (10)
{0, 1, . . . , 9, A, . . . , F } (16)
lowercase letters (26)
ASCII (128 or 256)
UTF-8 (1,112,064)

but it is better to keep the definition general. Very large alphabets cause
interesting algorithmic problems.

Runs 33

Suppose A is some semi-automaton. Given a word u = a1a2 . . . am over the
alphabet of A a run of the automaton on u is an alternating sequence of states
and letters

p0, a1, p1, a2, p2, . . . , pm−1, am, pm

such that pi−1
ai−→ pi is a valid transition for all i. p0 is the source of the run

and pm its target, and m ≥ 0 its length. So a run is just a path in a labeled
digraph.

Sometimes we will abuse notation and also refer to the corresponding sequence
of states alone as a run:

p0, p1, . . . , pm−1, pm

Traces 34

Given a run
π = p0, a1, p1, a2, p2, . . . , pm−1, am, pm

of an automaton, the corresponding sequence of labels

a1a2 . . . am−1am ∈ Σ⋆

is referred to as the trace or label of the run.

Every run has exactly one associated trace, but the same trace may have
several runs, even if we fix the source and target states (ambiguous automata).

Nondeterminism 35

So, a transition system is just an edge-labeled digraph where the labels are
chosen from some alphabet.
In the spirit of Rabin/Scott’s 1959 paper, it is perfectly acceptable to have
nondeterministic transitions

p
a−→ q and p

a−→ q′ where q ̸= q′

Note that these transitions are somewhat problematic from a “real algorithm”
perspective: are we supposed to go to q or to q′?

This idea may sound quaint today, but it was a huge conceptual
breakthrough at the time. Ponder deeply.

Special Semi-Automata 36

Definition
A semi-automaton is complete if for all p ∈ Q and a ∈ Σ there is some q ∈ Q
such that

p
a−→ q

is a transition.

In other words, the system cannot get stuck in any state, we always can
consume all input symbols.

Definition
A semi-automaton is deterministic if for all p, q, q′ ∈ Q and a ∈ Σ

p
a−→ q, p

a−→ q′ implies q = q′

Thus, a deterministic system can have at most one run from a given state for
any input.

Finite State Machines 37

Definition
A finite state machine or finite automaton is a structure

A = ⟨T ; acc⟩

where T = ⟨Q, Σ, δ⟩ is a transition system and acc is an acceptance condition.

We will make no attempt to define the concept of an acceptance condition in
general and simply explain various examples as we go along.

The most basic kind of acceptance condition is comprised of a collection of
initial states I ⊆ Q and a collection of final states F ⊆ Q. The idea is that A
accepts some input x ∈ Σ⋆ if there is a run from a state in I to a state in F
with label x.

The (acceptance) language L(A) of the automaton A is the set of all words
accepted by the automaton.

Acceptance Conditions 38

The acceptance condition depends much on the automaton in question but it is
always a condition on the runs associated with a word u.

A run is accepting if it starts in I and ends in F .

In a moment we will consider the special case I = {q0} (think about resetting
the automaton to the unique initial state q0). In general, though, multiple final
states cannot be avoided.

Configurations 39

We can also think in terms of configurations, snapshots that contains all the
information needed to resume the computation later. In this case, we only need
to keep track of the current state p ∈ Q and the remainder z ∈ Σ⋆ of the
input.

p z p ∈ Q, z ∈ Σ⋆

One step in a computation is then given by δ (just a lookup table), the
so-called transition function.

p az A
1

q z ⇐⇒ δ(p, a, q)

Here p ∈ Q, a ∈ Σ, z ∈ Σ⋆.

Acceptance 40

The computation on input x ends after exactly |x| steps in some state q
without any input left. We accept if that state is final:

p x A q p ∈ I, q ∈ F

There is no need for a special halting state, we can simply read off the
“response” of the machine by inspecting the last state.

In other words, we solve the decision problem over Σ⋆ with yes-instances
L(A) ⊆ Σ⋆.

Useful States 41

Only those states in a finite state machine are relevant that lie on a path from
I to F . A state is called accessible if it is reachable from I, and coaccessible if
F is reachable from it.

One uses the same terminology for the whole automaton. In particular, an
automaton is trim if it is both accessible and coaccessible.

A state p is a trap if all transitions with source p also have target p. A state is
a sink if it is a trap and is not final.

DFAs 42

Combining the previous acceptance condition with completeness and
determinism produces a particularly useful type of automaton.

Definition
A deterministic finite automaton (DFA) is a structure

A = ⟨Q, Σ, δ; q0, F ⟩

where ⟨Q, Σ, δ⟩ is a deterministic and complete semi-automaton and q0 ∈ Q,
F ⊆ Q is the standard acceptance condition.

It is straightforward to see that a DFA has exactly one trace (or run) on any
possible input word.

Since we use the standard acceptance condition, a run is accepting if it leads
from q0 to some q ∈ F (a slight asymmetry).

Terminology Warning 43

Claim: One can safely assume that all states in a DFA are accessible, but
coaccessibility may fail.

Arguably, DFAs should be called complete, deterministic finite automata,
acronym CDFA. No one does this.

Alas, some authors allow incomplete deterministic machines under the name
DFA to accommodate the removal of states that are not coaccessible, such as
sinks.

We will always refer to these devices as partial DFAs (PDFAs) or incomplete
DFAs.

Extending the Transition Function 44

It is often convenient to think of the transition function as a map
δ : Q × Σ⋆ → Q defined by primitive recursion over words:

δ(p, ε) = p

δ(p, xa) = δ(δ(p, x), a)

In terms of the extended transition function, acceptance can be expressed
easily:

A accepts a word u iff δ(q0, u) ∈ F .

Note that for all words x and y:

δ(p, xy) = δ(δ(p, x), y)

Recognizable Languages 45

Definition
A language L ⊆ Σ⋆ is recognizable or regular∗ if there is a DFA M that
accepts L: L(M) = L.

Thus a recognizable language has a simple, finite description in terms of a
particular type of finite state machine. As we will see, one can manipulate the
languages in many ways by manipulating the corresponding machines.

In a sense, recognizable languages are the simplest kind of languages that are
of interest (there are more complicated types of languages such as context-free
languages that are critical for computer science).

∗Regular is more popular in the US, but hopelessly overloaded.

Weirdness 46

Note that we are using a slightly strange approach here: usually one first
defines a class of functions (RM computable, primitive recursive, polynomial
time computable, . . .).

Then one introduces the corresponding class of relations via characteristic
functions. This time we have no functions, only languages (think of them as
unary relations on Σ⋆).

There is a class of finite state machines that compute functions, so-called
transducers, more later.

No Majority 47

The diagram perspective is useful to show that the Majority language
M = { x ∈ 2⋆ | #0x < #1x } is not recognizable.

For assume otherwise and let n be the number of states in a DFA accepting
M . By definition, 0n1n+1 is accepted.
But then there is a path from q0 to a final state q, labeled 0n1n+1.
The first part must contain a loop that we can traverse multiple times, leading
to an accepted input of the form 0m1n+1 where m > n + 1.
Contradiction.

This rather trivial observation is also known at the Pumping Lemma (for
recognizable languages).

The Killer Apps 48

There are two somewhat separate reasons as to why finite state machines are
hugely important.

1 Membership in a recognizable language can be tested blindingly fast, and
using only sequential access to the letters of the word. This works very
well with streams and is the foundation of many text searching and edit-
ing tools (such as grep and emacs). All compilers use similar tools.

2 Another important aspect is the close connection between finite state
machines and logic. Here we don’t care so much about acceptance of
particular words but about the whole language. The truth of a formula
can then be expressed as “some machine has non-empty acceptance lan-
guage.” Actually, this becomes really interesting for infinite words (where
the first application disappears entirely).

Pattern Matching 49

text

pattern
Y

N
FSMconverter

Fast Acceptance Testing 50

Proposition
For any DFA A and any input string x we can test in time linear in |x| whether
A accepts x, with very small constants.

p = q0; // reset
while(a = x.next()) // next input symbol

p = delta[p][a]; // table look-up

return p in F; // table look-up

Of course, it might take some time to compute the lookup table δ in the first
place, but once we have it acceptance testing is very fast.

Text Search 51

0

1

3 6 9 12 15 17

4 7 10 13 16 18

2 5 8 11 14

A

C

G A T A T

T

A T A T A

T

A T A T

This is the skeleton of a machine that searches for strings ACGATAT,
ATATATA and TATAT.

Back-Transitions 52

A

C

G A T A T

T

A T A T A

T

A T A T

If a mismatch occurs, take a back-transition and then try again. From here is
not hard to construct a proper DFA.

The Algorithms 53

We will shortly discuss closure properties of the languages associated with finite
state machines. It will follow from these general results that a machine
searching for words like ACGATAT, ATATATA and TATAT trivially exists.

The important point is that there are algorithms that construct the machines
very efficiently, given the words as input. For example, the algorithm used in
the last example is due to Aho and Corasick.

These algorithms can be quite sophisticated and clever; there is a whole field
referred to as stringology that deals with them.

However, we will focus on the second killer app, finite state machines and logic.

Digression: The Early Days 54

W. S. McCulloch, W. Pitts
A logical calculus of the ideas immanent in nervous activity
Bull. Math. Biophysics 5 (1943) 115–133

S. C. Kleene
Representation of events in nerve nets and finite automata
in Automata Studies (C. Shannon and J. McCarthy, eds.)
Princeton UP, 1956, 3–41.

M. O. Rabin and D. Scott
Finite automata and their decision problems
IBM J. Research and Development, 3 (1959), 114–125.

http://www.cs.cmu.edu/~cdm/resources/McCullochPitts1943.pdf
http://www.cs.cmu.edu/~cdm/resources/Kleene1951.pdf
http://www.cs.cmu.edu/~cdm/resources/RabinScott1959.pdf

History 55

McCulloch (neuroscientist) and Pitts (logician) present the first attempt to
define the functionality of a neuron abstractly. The current AI craze goes back
to this paper.

References 56

The references in the paper are rather remarkable.

R. Carnap, The Logical Syntax of Language
Harcourt, Brace and Company 1938.

D. Hilbert, W. Ackermann, Grundzüge der Theoretischen Logik
Springer Verlag 1927.

B. Russell, A. N. Whitehead, Principia Mathematica
Cambridge University Press 1925.

1 Zero Space

2 Finite State Machines

3 DFA Decision Problems

Rabin-Scott 58

The 19559 paper by Rabin and Scott was an absolute breakthrough. For many
years it was the most highly cited paper in CS. In particular, it introduced two
major ideas:

nondeterminism in machines,

decision problems as a tool to study FSMs

Prior to the paper, computations on machines were always deterministic (even
though nondeterminism pops up in the λ-calculus and in Chomsky grammars).

The Membership Problem 59

Given any language one is faced with a natural decision problem: determine
whether some word belongs to the language. In this particular case the
language is represented by a DFA.

Problem: DFA Membership (DFA Recognition)
Instance: A DFA A and a word x.
Question: Does A accept input x?

Lemma
The DFA Membership Problem is solvable in linear time.

As we will see, there are other representations for recognizable languages where
the membership problem is more difficult to solve. This is of great practical
importance; many pattern matching problems can be phrased as membership in
recognizable languages but using descriptions that are more difficult to deal
with than DFAs.

More Decision Problems 60

Apart from membership testing there are several more complicated decision
problems associated with finite state machines that have efficient solutions as
long as the machine is a DFA. Again, these are crucial in many applications.

Problem: Emptiness
Instance: A DFA A.
Question: Does A accept no input?

Problem: Finiteness
Instance: A DFA A.
Question: Does A accept only finitely many inputs?

Problem: Universality
Instance: A DFA A.
Question: Does A accept all inputs?

Easy Decidability 61

Theorem
The Emptiness, Finiteness and Universality problem for DFAs are decidable in
linear time.

Proof.
Consider the unlabeled diagram G of the machine. Emptiness means that there
is no path in G from q0 to any state in F , a property that can be tested by
standard linear time graph algorithms (such as DFS or BFS). 2

Exercise
Show in detail how to deal with Finiteness and Universality.

Optimality in Size 62

A general problem related to computation that we have encountered previously
but not really pursued is program size complexity:

What is the (size of the) smallest program for a given task?

Note that this is somewhat orthogonal to the usual time and space complexity
of an algorithm: here the issue is the size of the code, not it’s efficiency. Can
you program a SAT solver on your wrist watch?

In general, identifying smallest programs is very hard. In particular for
Turing/register machines the problem is highly undecidable.

But for DFAs there is a very good solution.

Equivalence and State Complexity 63

It is easy to see that the same language can be recognized by many different
machines.

Definition
Two DFAs A1 and A2 over the same alphabet are equivalent if they accept the
same language: L(A1) = L(A2).

Given a few equivalent machines, we are naturally interested in the smallest
one. In some sense, the smallest machine is the best representation of the
corresponding recognizable language.

Definition
The state complexity of a DFA is the number of its states.
The state complexity of a recognizable language L is the size of a smallest DFA
accepting L.

Determining State Complexity 64

Naturally there is a computational problem lurking in the dark:

Problem: State Complexity
Instance: A recognizable language L.
Solution: The state complexity of L.

The input L is given by a DFA. We will show in a moment that state
complexity is computable, but efficient solutions require more work.

Note that we could ask similar questions for register and Turing machines
(Kolmogorov-Chaitin complexity). Alas, in this general setting everything
becomes highly undecidable. For example, one cannot determine the smallest
machine that generates a given target output and then halts.

How about primitive recursive functions?

Computability 65

The obvious algorithm for state complexity is to

generate all smaller DFAs, and
check them for equivalence.

There are exponentially many smaller machines, but at this point we are not
concerned with efficiency.

Lemma
Equivalence testing of DFA is decidable.

Proof.
It suffices to find some bound β so that A1 and A2 are equivalent iff they
agree on all words of length β.

Proof 66

We may safely assume that both machines have n states. Consider some word
x of length m that the machines disagree on.

We trace the computations of both machines on x. Write x≤i for the prefix of
x of length i.

Si =
(
δ1(q01, x≤i), δ2(q02, x≤i)

)
If m ≥ n2, then for some 0 ≤ i < j ≤ m we have Si = Sj . But then we can
shorten x by removing the factor xi+1, . . . , xj .

Repeting this sort of surgery ultimately produces a string of length at β = n2

works.
2

Checking all strings of length n2 is wildly exponential, but with effort one can
get the running time of Equivalence testing down to almost linear.

Existence 67

Note that the state complexity of a recognizable language always exists, albeit
for a silly reason: the natural numbers are well-ordered.

However, there are two potential problems that could make a smallest machine
somewhat useless.

There might be several DFAs of minimal size.

Even if there is only one (up to isomorphism), larger DFAs for the same
language might have no reasonable connection to the minimal one.

The first problem would make it difficult to compare languages on the basis of
their smallest machines.
The second problem could make it difficult to obtain a smallest machine given
an arbitrary one.
We will see that for DFAs neither problem occurs.

State Complexity: An Example 68

Consider the recognizable languages

La,k = { x ∈ {a, b}⋆ | xk = a }.

Thus x ∈ La,k iff the kth symbol in x is an a.

What is the state complexity of these languages?

For positive k this is not a problem: we can just skip over the first k − 1
symbols and then verify that xk really is a. State complexity is k + 2.

1 2 3 4 s
a, b a, b a

a, b a, b

b

The Nasty Case 69

But what if k is negative and we are looking for the |k|th symbol from the end?
E.g,

La,−3 = {aaa, aab, aba, abb, aaaa, aaab, aaba, aabb, . . .}

The crucial problem here is that the DFA does not know ahead of time when
the last input will appear. And we cannot just go backwards from the end (our
machines are one-way).

This may seem like a preposterous restriction, but streams do behave just like
this; we don’t know when the last input will come along.

Exercise
Figure out the state complexity of La,k for negative k. No strict lower bound is
required at this point, just come up with a machine that feels best possible.

Numbers and DFAs 70

Here is a much harder problem that deals with standard radix representations
of integers.
Write νB(x) or simply ν(x) for the numerical value of string x written in base
B, so x ∈ {0, 1, . . . , B − 1}⋆.
Also, one has to be a bit careful about the MSD and LSD. Unless otherwise
noted, we assume that the MSD is the first digit, so

ν(xkxk−1 . . . x1x0) =
∑
i≤k

xi Bi.

If the LSD is first we have a reverse radix representation.

We already know that divisibility by a fixed number m can be tested by a DFA
with respect to base B = 2. But there are many other, useful numeration
systems and it is not entirely clear whether one can build DFAs for all of them.

Divisibility in Base B 71

Lemma
Divisibility by m can be tested by a DFA in any base B.

Proof.
We can construct a canonical Horner automaton for this task.
Keep the state set Q = {0, 1, . . . , m − 1}.
Change the transition function to

δ(p, a) = p · B + a (mod m).

Initial state and only final state is 0.

Since δ(q0, x) = ν(x) (mod m) this works.
2

How About State Complexity? 72

By the lemma, the state complexity for m and B is at most m. But that
bound is not tight in general. For example, to check whether a number written
in base 5 is divisible by 5, the canonical solution looks like this:

Z N

1, 2, 3, 4

0

0 1, 2, 3, 4

This suggests the question whether there is an easy way to describe the state
complexity of our divisibility languages. Easy means: find some closed form,
some nice function of m and B.

Experimental Data 73

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3
4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2
5 5 5 5 2 5 5 5 5 2 5 5 5 5 2 5
6 4 3 4 6 2 6 4 3 4 6 2 6 4 3 4
7 7 7 7 7 7 2 7 7 7 7 7 7 2 7 7
8 4 8 3 8 5 8 2 8 5 8 3 8 5 8 2
9 9 3 9 9 4 9 9 2 9 9 4 9 9 4 9
10 6 10 6 3 6 10 6 10 2 10 6 10 6 3 6
11 11 11 11 11 11 11 11 11 11 2 11 11 11 11 11
12 5 5 4 12 3 12 4 5 7 12 2 12 7 5 4
13 13 13 13 13 13 13 13 13 13 13 13 2 13 13 13
14 8 14 8 14 8 3 8 14 8 14 8 14 2 14 8
15 15 6 15 4 6 15 15 6 4 15 6 15 15 2 15
16 5 16 3 16 8 16 3 16 9 16 5 16 9 16 2

m :↓ B :→

Data Mining 74

The problem is to extract useful information from this table.

Unfortunately, there aren’t too many patterns that are clearly visible.

For m a prime things seem straightforward.
Base B = 2 seems potentially doable (but not obvious).

It seems rather difficult to come up with a really good answer; incidentally, a
perfect term project.

Hard Question 75

How about more complicated properties of numbers?
Suppose we want to recognize powers of 3 written base 2.

This looks rather complicated. In fact there is no DFA that could recognize
these numbers (but the proof is quite hard, see Cobham’s theorem).

	Zero Space
	Finite State Machines
	DFA Decision Problems

