CDM

Register Machines

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FarLr 2023

Where Are We? 1

The examples from last lecture show that primitive recursive functions
are not enough to serve as a definition of computability—even though
they encompass a lot of functions that fail to be efficiently computable.

General Recursion Some intuitively computable functions, based on a
general type of recursion, fail to be primitive recursive.

Evaluation Computability forces functions to be partial in general, we
need to adjust our framework correspondingly.

Insane Growth Some computable total functions have stupendous growth
rates, far faster than primitive recursive ones.

1 Register Machines

2 Universality

A Different Model

What now? We will turn our problems into a solution: concoct a model
of computation that, by design, can handle Ackermann, Friedman's «
(and other perverse examples of computable functions) and partial
evaluation.

We will do this by using a machine model, another critical method to
define computability and complexity classes. There are many plausible
approaches, we will use a model that is slightly reminiscent of assembly
language programming, only that our language is much, much simpler
than real assembly languages.

Functions computed by these machines will turn out to be partial in
general, so this might fix all our problems.

Legitimate Question: Why Not Turing Machines?

Turing Machines are Brilliant

Of all the standard models of computation, Turing machines are most
easily shown to capture precisely the intuitive notion of computability:
arguably they correspond to the abilities of a human computor.

TMs are fairly simple, certainly much more palatable then
Herbrand-Godel equations or Church’s A-calculus, but not as nice as
models that are closer to actual hardware such as register machines or
random access machines.

And they work extremely well in the context of complexity theory, unlike
some of the other models. Since we are interested in abstract
computability, this is not a central concern for us.

Wittgenstein

Turing's “Machines.”

These machines are humans who calculate.

Turing Machines Suck

One substantial drawback of TMs is that it is hugely cumbersome to
actually construct interesting examples. Say, a TM that computes
multiplication of naturals given in binary. Or a universal machine that
can be run on nice examples. Or try to prove that a Turing machine, on
input n, can compute the nth prime.

Proofs in complexity theory using TMs are often incredibly tricky and use
very clever and intricate constructions. The justification is typically:
“clearly, one can construct a TM that does such-and-such ... " Looking
at these proofs, one often has the sense that the argument may well be
correct, but things feel a bit iffy.

Similarly, even tiny TMs with single-digit number of states are often just
about impossible to analyze (busy beaver problems).

Register Machine

Definition

A register machine (RM) consists of a finite number of registers and a
control unit.

We write Ry, R1, ...for the registers and [R;] for the content of the ith
register: a single natural number.

Note: there is no bound on the size of the numbers stored in our
registers, any number of bits is fine. This is where we break physics.

The control unit is capable of executing certain instructions that
manipulate the register contents.

Instruction Set

Our instruction set is very, very primitive:

@ inc r k
increment register R,., goto k.

@decrkl
if [R-] > 0 decrement register R, and goto k, otherwise goto [.

@ halt
well . ..

The gotos refer to line numbers in the program; note that there is no
indirect addressing. These machines are sometimes called counter
machines.

RM Programs

Definition
A register machine program (RMP) is a sequence of RM instructions
P=1IyL,...,1p_1.

For example, the following program performs addition:

// addition RO R1 —--> R2

0: dec 0 1 2
1: inc 2 0

2: dec1 3 4
3: inc 2 2

4: halt

Hardware versus Software 10

Since we have no intentions of actually building a physical version of a
register machine, this distinction between register machines and register
machines programs is slightly silly.

Still, it’s good mental hygiene: we can conceptually separate the physical
hardware that supports some kind of computation from the programs
that are executed on this hardware. For real digital computers this makes
perfect sense. A similar problem arises in the distinction between the
syntax and semantics of a programming language.

And, it leads to the juicy question: what is the relationship between
physics and computation? We'll have more to say about this in a while.

RM-Computability 11

Definition
A function is RM-computable if there is some RMP that implements the
function.

This is a bit wishy-washy: we really need to fix

@ a register machine program P,
@ input registers I, and

@ an output register O.

Then (P, 1,0) determines a partial function f : N¥ - N where k = |I|.

A Reasonable 1/0 Convention

e Given input arguments a = (ai,...,ax) € N¥, set the input regis-
ters: [R;] = a;.

@ All other registers are initialized to 0.

Then run the program.

If it terminates, read off the value: f(a) = [Ro].

If the program does not terminate, f(a) is undefined.

12

Run the Program? 13

To describe a computation of a RMP P we need to explain what a
snapshot of a computation is, and how get from one snapshot to the
next. Clearly, for RMPs we need two pieces of information:

@ the current instruction, and

@ the contents of all registers.

Definition
A configuration of P is a pair C = (p,x) € N x N™.

Steps in a Computation 14

Here is a very careful definition of what it means that a configuration
(p,) evolves to the next configuration (¢, y) in one step under P:

@ [, =1inc r kt
g=kand y = x[x, — z, + 1]

@ [, =dec r k 1:
zr>0,¢q=kand y =x[z, — z, — 1] or
z,=0,g=landy ==«

Notation: (p,x) % (¢,y).

Note that if (p,) is halting (i.e. I, = halt) there is no next
configuration. Ditto for p > n.

Whole Computation 15

Define

(p.) |5 (¢,9) = (0,) = (¢, 9)

t—1

px) b (a.y) = 30y ,2) 5 (@ ¥) | (@)
(. 2) [5 (¢.9) = 3t (.2) I (0,9)

A computation (or a run) of P is a sequence of configurations Cy, C1,
Csy, ...where C; l% Ci41. A computation may be finite or infinite.

Finite versus Infinite 16

Note that a computation may well be infinite: the program
0: inc 0 0

has no terminating computations at all. More generally, for some
particular input a computation on a machine may be finite, and infinite
for other inputs.

Also, computations may get stuck. The program

0: inc 0 1

cannot execute the first instruction since there is no goto label 1.

Cleaning Up 17

Note that we may safely assume that P = Iy, Iy,..., Iy uses only
registers R;, i < £. Similarly, we may assume that all the goto targets k
lie in the range 0 < k < £. Hence all numbers in the instructions are
bounded by /.

Wilog, Iy—1 is a halt instruction, and there are no others.

It follows that these clean RMs cannot get stuck, every computation
either ends in halting, or is infinite. From now on, we will always assume
that our programs are syntactically correct in this sense.

Exercise

Write a program transformer that converts an arbitrary RMP into an
“equivalent” one that has these extra properties.

Termination 18

Again, we have two kinds of computations: finite ones (that necessarily
end in a halt instruction), and infinite ones. We will write

(Ci)i<n and (Ci)i<w

for finite versus infinite computations.

Here w denotes the first infinite ordinal. If you don't like ordinals, replace
w by some meaningless but pretty symbol like co.

Computing a Function 19

Suppose P is an RMP of length ¢ where and I,_; = halt. The initial
configuration for input a € N* is E, = (0, (0, a,0)). So the input is in
registers Ry, ..., Ry, all others are zero; the initiall state is 0.

Definition
A RMP P computes the partial function f : N* s N if for all @ € N*:

o If a is in the support of f, then the computation of P on Cy = FE,
terminates in configuration C,, = ({—1, (b,y)) where f(a) = b.

@ If a is not in the support of f, then the computation of P on E,
fails to terminate.

Terminology 20

Since all the standard models of computation produce the same clone of
functions one simply speaks about computable functions (unless there is
a reason to point to some particular model).

Traditionally, computable functions are called

@ Recursive functions
computable functions that are total

@ Partial recursive functions
computable functions that may be partial

A Subtlety

Recall that according to our convention, it is not admissible that an RM
program could get stuck (because a goto uses a non-existing label).
What if we allowed arbitrary RM programs instead of only clean ones?

The class of computable functions would not change one bit, our
definitions are quite robust under (reasonable) modifications. This is a
good sign, fragile definitions are usually of little interest.

Exercise

Modify the definition so “getting stuck” is allowed and show that we
obtain exactly the same class of partial functions this way. Invent RMs
without a halt instruction.

21

It’s A Clone

Clearly we can generalize the notion of a clone from total functions to
partial ones.

Proposition

Register machines computable functions form a clone, containing the
clone of primitive recursive functions.

Exercise
Figure out the details.

22

Aside: Time Complexity

The number of steps in a finite computation provides a measure of
complexity, in this case time complexity.

Given a RM P and some input x let (C;);<n, where N < w, be the
computation of P on x.

We write the time complexity of P as

N if N <w,
Tp(x) =
r(@) {w otherwise.

If you are worried about w just read it as co. Alternatively, we could use
N — 1 as our step-count.

This may sound trivial, but it's one of the most important ideas in all of
computer science.

23

Named Registers

To make RMPs slightly easier to read we use names such as X, Y, Z
and so forth for the registers.

This is just a bit of syntactic sugar, if you like you can always replace X
by Rg, Y by Ry and so forth.

And we will be quite relaxed about distinguishing register X from its
content [X].

24

Digression: Notation 25

There is actually something very important going on here: we are trying
to produce notation that works well with the human cognitive system.

Humans are exceedingly bad at dealing with fully formalized systems; in
fact, we really cannot read formal mathematics except in the most trivial
(and useless) cases. Try reading Russell-Whitehead's Principia
Mathematica or Frege's Begriffsschrift if you don't believe me.

The current notation system in mathematics evolved over centuries and
is very carefully fine-tuned to work for humans.

Computers need an entirely different presentation and it is very difficult
to move between the two worlds. This is the main reason why
mathematical knowledge management is quite hard.

Example: Multiplication

Here is a program that multiplies registers X and Y, and places the
product into Z. U is auxiliary.

// multiplication XY -—>2
: dec X 1 6

dec 4
inc
inc
dec
inc
halt

aou s WwWNhKHEO
KadaNkK
B R WD

27

A Computation

XY -—>1Z

1
dec Y 2 4

inc Z 3
inc U

1
dec U 5 0
inc Y 4

halt

// multiplication
0 dec X
1
2
3:
4
5
6

NN N N N N N N N N N N N N

OO O A4 AN N+ 4O O OO
NN e oy <
N0 —~—-a
=== === = e e e e e e)

N i S S e S

AN NN A0 O O

NN N AN N N N N N N N N N N

OO OO A = NN ——H O OO
S "~
NN 0o~ —a
27 17 17 1./ 17 17 17 17 17 17 17 17 17 17

N e N e e e e e N S

O AN M 1 A M~ <10 <10 <f O

28

Time Complexity?

CXTYYYYRYY S

10

500

400

300

2000

100

Exercise

Determine the time complexity of the multiplication RM.

Flowgraph for Multiplication

U+

29

Example: Binary Digit Sum

The following RMP computes the number of 1's in the binary expansion
of X, the so-called binary digit sum of .

// binary digitsum of X --> 2
: dec X 1 4

dec 3

inc
inc
dec
inc
dec
inc
halt

W do U WNKHEO
XK KK NKX
Ao ON

(<)

Flowgraph for DigitSum

31

Digit Sum

The (binary) digit sum is actually quite useful in some combinatorial

arguments.
8 . . . o oo
6 . o com o com oom cman o com comcmEn oon cman coan anes

Dlamms wes @ee o @ee o o @e o o o
I 1 1 I 1 1 I 1
100 200 300 400 500

32

Exercises 33

Exercise

Show that every primitive recursive function can be computed by a
register machine. Implement a p.r. to RM compiler.

Exercise

Suppose some register machine M computes a total function f.
Why can we not conclude that f is primitive recursive?

Coding

To translate finite structures into (Godel-) numbers, we need a coding
system, consisting of three functions (see Coding for details).

(..):N*"=>N
dec: NxN =N
len: N — N
Here (...) is multiadic and thus cannot be primitive recursive, but dec

and len are typically primitive recursive (actually, even more basic than
that).

34

http://www.cs.cmu.edu/~cdm/pdf/02-coding.pdf

Even/Odd Coding 35

A very natural system can be built around the pairing function
m(z,y) = 2°(2y +1)
For example
7(5,27) = 3255 = 1760 = 110111 000005
In general, the binary expansion of m(x,y) looks like so:

YeYk—1---Yo 1 00...0

x

where yryk—1 . ..yo is the standard binary expansion of y (yj is the most
significant digit).

Picture (log plot)

36

A Bijection 37

The range of 7 is N, so we don’t have a bijection. As it turns out, we
can exploit this produce a rather elegant coding function:

{nil) :

<a17 00 '7an> = ﬂ-(alv <a23 00 '7an>)

0

Informally, it is easy to see that this coding function is indeed a bijection
between N* and N.

(2,3,5,1) = 20548

—1_0_1000001000,1_00
Y YT Y Y

This makes it relatively easy to compute the decoding function dec(z, 7).

Flowgraph dec(z, 1)

Y+

Prepend b to =

@0
9

Y+

O ——()

g oRRG
Gg@)

39

Self-Reference 40

As Godel has shown devastatingly in his incompleteness theorem,
self-reference is an amazingly powerful tool.

On occasion, it wreaks plain havoc: his famous incompleteness theorem
takes a wrecking ball to first-order logic.

However, in the context of computation, self-reference turns into a
genuine resource. We developed our coding machinery to show that
standard discrete structures can be expressed as natural numbers and
thus be used in an RPM. But an RPM is itself a discrete structure, so
RPMs can compute with (representations of) RPMs.

This leads to the fundamental concept of universality.

Coding RMPs

A single instruction of an RMP can easily be coded as a sequence
number:

@ halt (0)
@ inc r k (r k)
@decrkl (r k1)

And a whole program can be coded as the sequence number of these
numbers.

41

Example: Addition

For example, the simplified addition program

// addition RO + R1 —--> R1
0: dec 0 1 2
1: inc1 O
2: halt

has code number

((0,1,2), (1,0), (0)) = 88098369175552.

Note that this code number does not include |/O conventions, but it is
not hard to tack these on if need be.

42

2 Universality

Turing and Universality

This special property of digital computers, that they can
mimic any discrete state machine, is described by saying
that they are universal machines. The existence of ma-
chines with this property has the important consequence
that, considerations of speed apart, it is unnecessary to de-
sign various machines to do various computing processes.
They can all be done with one digital computer, suitably
programmed for each case. It will be seen that as a conse-
quence of this all digital computers are in a sense equivalent.

Alan Turing (1950)

44

UTM

45

Turing 1936 46

Computational universality was established by Turing in 1936 as a purely
theoretical concept.

Surprisingly, within just a few years, practical universal computers (at
least in principle) were actually built and used:

1941 Konrad Zuse, Z3
1943 Tommy Flowers, Colossus
1944 Howard Aiken, Mark |

1946 Prosper Eckert and John Mauchley, ENIAC

Falling off a CIiff 47

Let’s define the state complexity of a RMP to be its length, the number
of instructions used in the program.

An RMP of complexity 1 is pretty boring, 2 is slightly better, 3 better
yet; a dozen already produces some useful functions. With 1000 states
we can do even more, let alone with 1000000, and so on.

Except that the “so on" is plain wrong: there is some magic number N
such that every RMP can already by simulated by a RMP of state
complexity just N: we can hide the complexity of the computation in one
of the inputs. As far as state complexity is concerned, maximum power is
already reached at N.

This is counterintuitive, to say the least.

Simulating Random Access Memory 48

How does one construct a universal computer? According to the last
section, we can code a RMP P =1y, I1,...,1,_1 as an integer e, usually
called an index for P in this context.

Moreover, we can access the instructions in the program by performing a
bit of arithmetic on the index. Note that we can do this non-destructively
by making copies of the original values.

So, if index e and some line number p (for program counter) are stored in
registers we can retrieve instruction I, and place it into register I.

Simulating a RM

Suppose we are given a sequence number e that is an index for some
RMP P requiring one input x.

We claim that there is a universal register machine (URM) U that, on
input e and x, simulates program P on x.
Alas, writing out U as a pure RMP is too messy, we need to use a few

“macros” that shorten the program.

Of course, one has to check that all the macros can be removed and
replaced by corresponding RMPs, but that is not very hard.

49

Macros 50

@ copy r s k
Non-destructively copy the contents of R, to R, goto k.

@ zeror k1
Test if the content of R, is 0; if so, goto k, otherwise goto [.

@popr sk
Interpret R, as a sequence number a = (b, c); place b into R, and ¢
into R,, goto k. If R, = 0 both registers will be set to 0.

@read r t s k
Interpret R, as a sequence number and place the R;th component
into R, goto k. Halt if R; is out of bounds.

@ write r t s k
Interpret R, as a sequence number and replace the R;th component
by Rs, goto k. Halt if R; is out of bounds.

The Pieces

Here are the registers used in U:

x input for the simulated program P

code number of P

A m

register that simulates the registers of P
| register for instructions of P

p program counter

Hack: x is also used as an auxiliary variable to keep the whole program
small.

51

Universal RM 52

0: copy E R 1 // R =E

1: write R p x 2 // R[0] = x

2: read E p I 3 // I = E[p]

3: pop I r 4 // r = pop(I)

4: zero I13 5 // if I was halt

5: pop I p 6 // p = pop(I)

6: read R r x 7 // x = R[r]

7: zero I 8 9 // check if I was inc/dec
8: inc x 12 // x++; goto 12

9: zero x 10 11 // if(x !'= 0) goto 11
10: pop I p 2 // p = pop(I)
11: dec x 12 12 // x——
12: write R r x 2 // R[r] = x; goto 2
13: halt

Size? 53

Of course, the 13 lines in this universal machine are a bit fraudulent, we
really should expand all the macros. Still, the resulting honest register
machine would not be terribly large.

And there are lots of ways to optimize.

Exercise

Give a reasonable bound for the size of the register machine obtained by
expanding all macros.

Exercise

Try to build a smaller universal register machine.

Halting 54

If we define computability in terms of RMs, it follows that the Halting
Problem for RMs is undecidable: there is no RM that takes an index e as
input and determines whether the corresponding RM P, halts (on all-zero
registers).

Since RMs are perfectly general computational devices, this means that
there is no algorithm to determine whether RM P, halts; the Halting
Problem is undecidable.

Small Machines can be Complicated 55

Define a (n, k)-Turing machine to be a TM that has n states and a tape
alphabet of size k.

Clearly, there is a Busy Beaver problem for (n, k) TMs, the standard
problem is just the special case (n + 1,2). Very little is known about the
general case.

In a similar spirit, one can ask for small values of n and k if there is a
universal (n, k) machine. One would expect a trade-off between n and k.
Some values where universal machines are known to exist are

(24,2),(10,3),(7,4), (5,5), (4,6), (3,10), (2,18), (2, 5)

A Universal Turing Machine

Exercise

Figure out what this picture means.

Exercise (Very Hard)

Prove that this is really a universal Turing machine.

56

No Coding 57

One very pleasant feature of register machines is that the do not require
any input/output coding for arithmetic functions.

In general this is emphatically not the case. We will shortly introduce the
aforementioned Turing machines that naturally operate on strings, so
numbers have to be coded (say, using binary notation).

Things get worse if on looks at more exotic models of computation such
as cellular automata. In fact, any physics-like model tends to produce
headaches when it comes to |/O conventions.

Who Cares? 58

By constructing more RMs, one can try to convince oneself that any
“intuitively computable” function is already RM-computable. So the
universal RM can compute all computable functions.

Or, if one prefers Turing machines, one can show that an arithmetic
function is RM-computable iff it is TM-computable. Or A\-computable, or
p-computable, and so on and so forth.

For discrete computation, there is only one model (as opposed to
computation on the reals).

	Register Machines
	Universality

