
CDM
Wild Computation

Klaus Sutner
Carnegie Mellon University
Fall 2023

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

Ackermann’s Function (1928) 2

Primitive recursive functions uses only a single variable. One might
suspect that recursion over multiple variables could potentially produce
more complicated functions, but one needs to be careful: who knows,
maybe there is some clever way to express a multiple recursion in terms
of a single one.

Here is a classical example: the Ackermann function A : N × N → N
defined by double recursion. We write x+ instead of x + 1.

A(0, y) = y+

A(x+, 0) = A(x, 1)

A(x+, y+) = A(x, A(x+, y))

On the surface, this looks more complicated than primitive recursion. We
need to make sure that there really is no trick to rewrite this as a single
recursion.

Family Perspective–Currying 3

It is useful to think of Ackermann’s function as a family of unary
functions (Ax)x≥0 where Ax(y) = A(x, y) (“level x of the Ackermann
hierarchy”).

The definition then looks like so:

A0(y) = y+

Ax+(0) = Ax(1)

Ax+(y+) = Ax(Ax+(y))

From this it follows easily by induction that

Lemma
Each of the functions Ax is primitive recursive (and hence total).

The Bottom Hierarchy 4

A(0, y) = y+

A(1, y) = y++

A(2, y) = 2y + 3

A(3, y) = 2y+3 − 3

A(4, y) = 22. . .
2

− 3

The first 4 levels of the Ackermann hierarchy are easy to understand,
though A4 starts causing problems: the stack of 2’s in the exponentiation
has height y + 3.

Tetration 5

A4 is usually called super-exponentiation or tetration and often written
na or a↑↑n.

a↑↑n =
{

1 if n = 0,
aa↑↑(n−1) otherwise.

For example,
A(4, 3) = 2↑↑6 − 3 = 2265536

− 3

an uncomfortably large number (we’ll see much worse in a moment).

The Mystery of A(6, 6) 6

Alas, if we continue just a few more levels, darkness befalls.

A(5, y) ≈ super-super-exponentiation

A(6, y) ≈ an unspeakable horror

A(7, y) ≈ speechlessness

For level 5, one can get some vague understanding of iterated
super-exponentiation, A(5, y) = (λz.z ↑↑ y + 3)y+3(1) − 3 but things
start to get murky.
At level 6, we iterate over the already nebulous level 5 function, and
things really start to fall apart.
At level 7, Wittgenstein comes to mind: “Wovon man nicht sprechen
kann, darüber muss man schweigen.”∗

∗Whereof one cannot speak, thereof one must be silent. Tractatus Logico-
Philosophicus

Ackermann vs. PR 7

Theorem
The Ackermann function dominates every primitive recursive function f
in the sense that there is a k such that

f(x) < A(k, max x).

Hence A is not primitive recursive.

Sketch of proof.
Since we are dealing with a rectype, we can argue by induction on the
buildup of f .
The atomic functions are easy to deal with.
The interesting part is to show that the property is preserved during an
application of composition and of primitive recursion. Alas, the details
are rather tedious.

2

Ackermann and Union/Find 8

One might think that the only purpose of the Ackermann function is to
refute the claim that computable is the same as p.r. Surprisingly, the
function pops up in the analysis of the Union/Find algorithm (with
ranking and path compression).
The running time of Union/Find differs from linear only by a minuscule
amount, which is something like the inverse of the Ackermann function.
But in general anything beyond level 3.5 of the Ackermann hierarchy is
irrelevant for practical computation.

Exercise
Read an algorithms text that analyzes the run time of the Union/Find
method.

But Is It Computable? 9

Here is an entirely heuristic argument: we can write a tiny bit of C code
that implements the Ackermann function (assuming that we have infinite
precision integers).

int acker(int x, int y)
{
return(x ? (acker(x-1, y ? acker(x, y-1) : 1)) : y+1);

}

All the work of organizing the nested recursion is easily handled by the
compiler and the execution stack. So this provides overwhelming
evidence that the Ackermann function is intuitively computable.

Proofs by Hashing 10

We could memoize the values that are computed during a call to A(a, b):
build a hash table H such that H[x, y] = z whenever an intermediate
result A(x, y) = z is discovered during the computation.

In practice, this helps in computing a few small values of A, but does not
go very far.

More interesting is the following: suppose we call A(a, b) and obtain
result c, producing a hash table H as a side effect.

Claim: H provides a proof that A(a, b) = c.

Not a proof in the classical sense, but an object that makes it possible to
perform a simple coherence check and conclude that the value c is indeed
correct.

Checking 11

We have to check the following properties everywhere in H:

H[0, y] = z implies z = y + 1

H[x+, 0] = z implies H[x, 1] = z

H[x+, y+] = z implies H[x, z′] = z where z′ = H[x+, y]

The whole check comes down to performing O(N) table lookups where
N is the number of entries in H.

Once the table is verified, we check H[a, b] = c. Done.

PR versus Computable 12

Obvious Question: how much do we have to add to prim-
itive recursion to capture the Ackermann function?

As it turns out, we need just one modification: we have to allow
unbounded search: a type of search where the property we are looking for
is still primitive recursive, but we don’t know ahead of time how far we
have to go.

Unbounded Search vs. Ackermann 13

Proposition
There is a primitive recursive relation R such that

A(a, b) = fst
(
min

(
z | R(a, b, z)

))

Here fst(s) is a decoding function that extracts the first element of a
coded sequence, expressed as a code number s.

Sketch of proof. Think of z as a pair ⟨c, h⟩ where h encodes the hash
table H from above, and c = H[a, b].
R performs the coherence test described above and is clearly primitive
recursive. 2

Here is a more direct, computational description.

Ackermann and Lists 14

The computation of, say, A(2, 1) can be handled in a very systematic
fashion: always unfold the rightmost subexpression.

A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1)) = A(1, A(0, A(1, 0))) = . . .

Note that the A’s and parens are just syntactic sugar, a better
description would be

2, 1⇝ 1, 2, 0⇝ 1, 1, 1⇝ 1, 0, 1, 0⇝ 1, 0, 0, 1⇝ 1, 0, 2⇝ 1, 3⇝ 0, 1, 2
⇝ 0, 0, 1, 1⇝ 0, 0, 0, 1, 0⇝ 0, 0, 0, 0, 1⇝ 0, 0, 0, 2⇝ 0, 0, 3⇝ 0, 4⇝ 5

We can model these steps by a list function ∆ defined on sequences of
naturals (or, we could use a stack).

List Operation 15

∆(. . . , 0, y) = (. . . , y+)

∆(. . . , x+, 0) = (. . . , x, 1)

∆(. . . , x+, y+) = (. . . , x, x+, y)

Since A is total, there is some time t for any a and b such that

∆t(a, b) = (c)

Clearly this condition is primitive recursive in (a, b, c, t).

A(3, 4) 16

The computation takes 10307 steps, the plot shows the lengths of the list.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

Evaluation 18

Very rapidly growing functions such as the Ackermann function are one
reason primitive recursion is not strong enough to capture computability.
Here is another obstruction: we really need to deal with partial functions.
Recall the evaluation operator for our PR terms:

eval(τ, x) = value of JτK on input x

It is clear that eval is intuitively computable (take a compilers course). In
fact, it is not hard to implement in eval in any modern programming
language.

Question: Could eval be primitive recursive?

A useless answer would be to say no, the types don’t match.

Indices 19

The first argument of eval is a term τ in our PR language, so our first
step will be to replace τ by an index τ̂ ∈ N.

The index τ̂ will be constructed in a way that makes sure that all the
operations we need on indices are clearly primitive recursive.

The argument vector x ∈ Nn will also be replaced by its sequence number
⟨x1, . . . , xn⟩. Hence we will be able to interpret eval as a function of type

N × N → N

and this function might potentially be primitive recursive.

Coding PR 20

Here is one natural way of coding primitive recursive terms as naturals:

term code
0 ⟨0, 0⟩

P n
i ⟨1, n, i⟩
S ⟨2, 1⟩

Prec[h, g] ⟨3, n, ĥ, ĝ⟩
Comp[h, g1, . . . , gn] ⟨4, m, ĥ, ĝ1, . . . , ĝn⟩

Thus for any index e, the first component fst(e) indicates the type of
function, and snd(e) indicates the arity.

There is nothing sacred about this particular way of coding PR terms,
there are many other, equally natural ways.

Diagonalization 21

Now suppose eval is p.r., and define the following function

f(x) := eval(x, x) + 1

This may look weird, but certainly f is also p.r. and must have an index
e. But then

f(e) = eval(e, e) + 1 = f(e) + 1

and we have a contradiction.

So eval is another example of an intuitively computable function that
fails to be primitive recursive.

This example may be less sexy than the Ackermann function, but it
appears in similar form in other contexts.

Partial Functions 22

How do we avoid the problem with eval?

The only plausible solution appears to be to admit partial functions,
functions that, like eval, are computable but may fail to be defined on
some points in their domain. In this case, eval(e, e) is undefined.

For a CS person, this is a fairly uncontroversial idea: everyone who has
ever written a sufficiently sophisticated program will have encountered
divergence: on some inputs, the program simply fails to terminate.

What may first seem like a mere programming error, is actually a
fundamental feature of computable functions.

General Computability 23

We presented the last argument in the context of primitive recursive
functions, but note that the same reasoning also works for any clone of
computable functions—as long as

successor and eval both belong to the clone, and
each function in the clone is represented by an index.

But then eval must already be partial, no matter what the details of our
clone are.

General computability requires partial functions, basta.

Fiat Halting 24

Since any general model of computation must deal with partial functions,
it is entirely natural to ask whether a given function f is defined on some
particular input x.

Another reasonable question would be to ask whether f is total; or even
whether f is nowhere defined.

So we automatically run into the Halting Problem, the first example of a
perfectly well-defined question that turns out to be undecidable.

Notation Warning 25

We write
f : A ↛ B

for a partial function from A to B.

Terminology:
domain dom f = A

codomain cod f = B

support spt f = { a ∈ A | ∃ b f(a) = b }

Warning: Some misguided authors use “domain of definition” instead of
support, and then forget the “of definition” part.

Faking It 26

Suppose we have a partial function f : N ↛ N . We could try to turn f
into a total function F : N ↛ N by setting

F (x) =
{

f(x) + 1 if x ∈ spt f
0 otherwise.

F clearly is total, and we can easily recover f from it.

In set theory la-la land there is no problem at all. But this construction is
not very useful for us: there are computable f such that F fails to be
computable.

Kleene’s Notation 27

Given a clone of computable functions, such as the primitive recursive
ones, we write

{e}

for the eth function in the collection, e ≥ 0. Here the index e is a
sequence number, but it is helpful to think of it as a program (in some
suitable language).

Since these functions are partial in general we have to be a bit careful
and write

{e}(x) ≃ y

to indicate that {e} with input x returns output y. This notation is a bit
sloppy, arguably we should also indicate the arity of the function–but for
us that’s overkill.

More Convergence 28

To express convergence we also write

{e}(x) ↓

if {e} on input x terminates and produces some output, and

{e}(x) ↑

when the computation fails to terminate.

For example, Kleene equality {e}(x) ≃ {e′}(x) should be interpreted as:

either {e}(x) ↓ and {e′}(x) ↓ and the output is the same; or

{e}(x) ↑ and {e′}(x) ↑.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

Busy Beaver Problem 30

In 1962, Tibor Rado described a now famous problem in computability.
Consider Turing machines on tape alphabet Σ = {0, 1} (where 0 is the
blank symbol) and n states.

Question: What is the largest number of 1’s any such
machine can write on an initially blank tape, and then halt?

Halting is crucial, otherwise we could trivially write infinitely many 1’s.

Other Variants 31

Rado’s original question is actually slightly arbitrary, here are two versions
more firmly rooted in computability theory.

Time Complexity What is the largest number of moves a halting n-
state machine can make?

Space Complexity What is the largest number of tape cells a halting
n-state machine can use?

Incidentally, it is standard practice to ignore the halting state in the
count, so n means “n ordinary states plus one halting state.”

Hierarchy 32

We write BBT(n) for largest number of steps of any halting n-state
machine and refer to BBT as the Busy Beaver function.

We will also consider the original version of the problem and write
BBW(n) for the largest number of 1’s written by any halting n-state
machine.

Clearly, BBT(n) ≥ BBW(n), but the former has the advantage of relating
more directly to the Halting Problem, which one would suspect to be the
central issue with busy beaver functions.

Busy Beaver n = 1 33

BBT(1) = 1

To see this, note that any attempt to make a second move would already
lead to an infinite loop.
Similarly, BBW(1) = 1.

Busy Beaver n = 2 34

Amazingly, the answer is no longer obvious: BBW(2) = 4 and
BBT(2) = 6 with the same champion.

0 1
p (q,1,R) (q,1,L)
q (p,1,L) halt

p0 1q0 p11 q011 p0111 1q111

Orbit 35

Busy Beaver n = 3 36

Here things start to get messy: there are 4 826 809 Turing machines to
consider.

Exploiting isomorphisms, filtering out machines where all 4 states are
reachable (in the diagram, not necessarily the computation on empty
tape), and checking for halting we get down to 405 072

From the last group we can pick out the champions.

Write-Champion 37

Halt-Champion 38

How bad can it be? 39

The number of machines quickly becomes very difficult to manage:

n #machines
4 6 975 757 441
5 16 679 880 978 201

As usual, the problem is not isomorph-rejection (which requires
constructing all machines first), but to onlt build non-isomophic ones to
begin with. And, given these numbers, it won’t make much of dent no
matter what.

The Marxen-Buntrock Machine 40

The current champion machine was found by Marxen and Buntrock, and
its discovery is a small miracle. Here is the table of the machine. Clearly
all 5 states plus the halt state are reachable in the diagram.

0 1
1 (2,1,R) (3,1,L)
2 (3,1,R) (2,1,R)
3 (4,1,R) (5,0,L)
4 (1,1,L) (4,1,L)
5 halt (1,0,L)

Of course, that’s nowhere near enough: they need to appear in the
computation on empty tape.

50 Steps 41

400 Steps 42

Misleading Pictures 43

Looking at a run of the Marxen-Buntrock machine for a few hundred or
even a few thousand steps one invariably becomes convinced that the
machine never halts: the machine zig-zags back and forth, sometimes
building solid blocks of 1’s, sometimes a striped pattern.

Whatever the details, the machine seems to be in a “loop” (not a an easy
concept to clarify for Turing machines). Bear in mind: there are only 5
states, there is no obvious method to code an instruction such as “do
some zig-zag move 1 million times, then stop”.

Still, this machine stops after 47 176 870 steps on output 10(100)4097.

Why is this Hard? 44

There are several fundamental obstructions to computing busy beaver
numbers, in increasing levels of depth.

Brute-force search quickly becomes infeasible, even for single-digit
values of n.

The Halting conundrum: Even if we could somehow deal with com-
binatorial explosion, there is the problem that we don’t know if a
machine will ever halt – it might just keep running forever.

Reasoning about the behavior of Turing machines in a formal sys-
tem like Peano arithmetic or Zermelo-Fraenkel set theory is neces-
sarily of limited use.

State of the Art 45

n BBT(n) BBW(n)
1 1 1
2 6 4
3 21 6
4 107 13
5 ≥47 176 870 ≥4098
6 >7.4 × 1036 534 >3.5 × 1018 267

Concrete values are available for n ≤ 4; beyond that, we only have
bounds. And these bounds soon get ridiculous:

BBT(7) > 102·10101018 705 353

Alas, these results are not as robust as one would like them to be, see
Harland 16 for a critique.

http://www.cs.cmu.edu/~cdm/papers/Harland2016.pdf

6-State Busy Beaver 46

For n = 6 all hell breaks loose.

The raw search space here has size 59 604 644 775 390 625, but this can
be improved a bit exploiting symmetries and reachability.

Halting gets very messy here, though: there is no good heuristic as to
when the run should be truncated (leading to the conlusion that the
machine is not halting).

May 2022 47

A new machine by Pavel Kropitz, takes about 10 ↑↑ 15 steps to halt. A
more precise bound is

1010101010101010101010101010104.023873729

You’re welcome.

Small Machines can be Complicated 48

Define a (n, k)-Turing machine to be a TM that has n states and a tape
alphabet of size k.

Clearly, there is a Busy Beaver problem for (n, k) TMs, the standard
problem is just the special case (n + 1, 2). Very little is known about the
general case.

In a similar spirit, one can ask for small values of n and k if there is a
universal (n, k) machine. One would expect a trade-off between n and k.
Some values where universal machines are known to exist are

(24, 2), (10, 3), (7, 4), (5, 5), (4, 6), (3, 10), (2, 18), (2, 5)

Busy Beaver Exercises 49

Exercise
Derive the transition table of the 3-state Busy Beaver machine. Give an
intuitive explanation of how this machine works.

Exercise
Prove that the last machine is indeed the champion: no other halting
3-state machine writes more than 6 ones.

Exercise (Hard)
Find the Busy Beaver champion for n = 4.

Exercise (Extremely Hard)
Organize a search for the Busy Beaver champion for n = 5.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

Subsequence Order 51

Recall the subsequence ordering on words where u = u1 . . . un precedes
v = v1v2 . . . vm if there exists a strictly increasing sequence
1 ≤ i1 < i2 < . . . in ≤ m of positions such that u = vi1vi2 . . . vin

.
In symbols: u ⊑ v.

In other words, we can erase some letters in v to get u. Note that it is
easy to check for subsequences in linear time.

Subsequence order is never total unless the alphabet has size 1.

One nice features of subsequence order is that is entirely independent of
any underlying order of the alphabet (unlike, say, lexicographic or
length-lex order).

Warmup: Antichains 52

An antichain in a partial order is a sequence x0, x1, . . . , xn, . . . of
elements such that xi and xj are incomparable for i < j.

Example
Consider the powerset of [n] = {1, 2, . . . , n} with the standard subset
ordering. How does one construct a long antichain?

For example, x0 = {1} is a bad idea, and x0 = [n] is even worse.

What is the right way to get a long antichain?

Higman’s Lemma 53

Theorem (Higman 1952)
Every antichain in the subsequence order is finite.

Proof. Here is the Nash-Williams proof (1963): assume there is an
infinite antichain. Then there is a non-increasing sequence x = (xn) in
the sense that i < j implies that xi ̸⊑ xj .

Choose the minimal such sequence in the sense that xn is the length-lex
minimal word such that x0, x1, . . . , xn starts a non-increasing sequence.

There must be a letter a such that the subsequence xnj = a yj , j ≥ 0, of
words starting with a is infinite. Let k = n0 and define a new sequence

z = x0, x1, . . . , xk−1, y0, y1, . . .

Proof, contd. 54

One can check that the new sequence z is again non-increasing.
But z violates the minimality constraint on x at position k, contradiction.

2

Note that this proof is highly non-constructive. We are essentially
performing surgery on a branch in an infinite tree that exists by
assumption. A lot of work has gone into developing more constructive
versions of the theorem, but things get a bit complicated.

See Seisenberger.

http://www.cs.cmu.edu/~cdm/resources/Seisenberger00.pdf

Friedman’s Self-Avoiding Words 55

We are using 1-indexing. For a finite or infinite word x define the ith
block of x to be the factor (of length i + 1) of x:

x[i] = xi, xi+1, . . . , x2i

Note this makes sense only for i ≤ |x|/2 when x is finite. We will always
tacitly assume that this bound holds.

Bizarre Definition: A word is self-avoiding if, for all i < j, the block x[i]
fails to be a subsequence of block x[j].

For example,

abbbaaaa is self-avoiding
abbbaaab is not self-avoiding

Only Finite 56

The following is an easy consequence of Higman’s theorem.

Theorem
Every self-avoiding word is finite.

If there were an infinite self-avoiding word x ∈ Σω, the collection
{ x[i] | i ≥ 1 } of all its blocks would form an infinite antichain.

How Long? 57

Write Σk for an alphabet of size k.

By the last theorem and König’s lemma, the set Sk of all finite
self-avoiding words over Σk must itself be finite.

But then we can define the following max-length function:

α(k) = max
(

|x| | x ∈ Sk

)
So α(k) is the length of the longest self-avoiding word over Σk.

Clearly, α is total and it is strictly increasing.

Moreover, α is easily computable, there is a very straightforward
algorithm to determine the value of α(k).

The Algorithm 58

Note that any prefix of a self-avoiding word must also be self-avoiding.
This produces a simple, brute-force algorithm to compute α.

At round 0, define S = {ε}.
In each round, extend all words in x ∈ S by all letters a ∈ Σk.
If xa is still self-avoiding, keep it; otherwise toss it.
When S becomes empty at round n + 1, return α(k) = n.

Each step is easily primitive recursive, really just some wordprocessing.

Termination is guaranteed by the theorem: we are essentially growing a
tree (actually: a trie). If the algorithm did not terminate, the tree would
be infinite and thus have an infinite branch, corresponding to an infinite
self-avoiding word; contradiction.

Some Examples 59

Here is the number of self-avoiding words of length up to 12, for k ≤ 4.

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 0 0 0 0 0 0 0 0
2 4 8 8 16 12 24 4 8 2 4 0
3 9 27 60 180 348 1044 1518 4554 5334 16002 16674
4 16 64 216 864 2688 10752 29376 117504 285108 1140432 2569248

So α(1) = 3: the first time a word contains 2 blocks, it is not longer
self-avoiding.

A little fumbling (or writing a program) shows that α(2) = 11, as
witnessed by abbbaaaaaaa and abbbaaaaaab and their duals.

Challenge for Hackers 60

Write a program in your favorite fast language that extends the table,
ideally by a column or a row.

I suspect the former is feasible, the latter may be tricky.

And k = 3? 61

Alas, α(3) is a bit harder to describe. We will use a slight variant of the
Ackermann function for this purpose.

B1(x) = 2x

Bk+(x) = Bx
k (1)

Bx
k (1) means: iterate Bk x-times on 1. So B1 is doubling, B2

exponentiation, B3 super-exponentiation and so on.

Just like the Ackermann function, B5 essentially makes no sense to mere
mortals, its growth rate is stupendous.

Drum Roll 62

α(3) > B7198(158386)

This is an incomprehensibly, mind-numbingly large number.

Never mind the 158386, it’s the 7198 that kills any chance of
understanding, at least roughly, what this means.

Smelling salts, anyone?

It is truly surprising that a function like α with a really simple algorithm
should exhibit this kind of growth.

It’s a Feature 63

And, of course, there is α(α(3)), α(α(α(3))), and so on. Or how about

αα(3)(3)

At this point one might wonder whether our whole approach to
computability is perhaps a bit off—we certainly did not intend to deal
with monsters like α.

Alas, as it turns out, this is a feature, not a bug: all reasonable
definitions of computability admit things like α, and worse. Far worse.

It is a fundamental property of computable functions that some of them
have absurd growth rates.

	General Recursion
	Evaluation
	The Busy Beaver Problem
	Insane Growth

