
CDM
Coding Systems

Klaus Sutner

Carnegie Mellon University
Fall 2023



1 Coding the World

2 Gödel’s β Function

3 Coding Systems



Faking Data structures 2

Our primitive recursive programming language has one glaring defect: it only
supports one data type, N. There are no lists, trees, graphs, hash tables and so
on, only natural numbers.

As it turns out, all these discrete structures can be obtained from just integers
if we are able to express sequences a0, a1, . . . , an−1 of numbers as a single
number ⟨a0, a1, a2, . . . , an−1⟩.

This is obviously not meant as a practical programming idea, it is purely
conceptual: natural numbers already suffice in principle, and the ability to
compute with them means that other computation involving, say, lists, are also
possible.



Algorithms in the RealWorldTM 3

We claim that any algorithm you will ever see, outside of a class dealing
directly with logic and computability, is always primitive recursive. And, in fact,
often trivially so.

There are two parts to this claim:

All these algorithms operate on finitary data structures that can be coded
as natural numbers, and

given this coding, for input as well as output, the corresponding arith-
metic functions are always primitive recursive.

Of course, there is no actual theorem here, just an observation. I’d be most
curious to hear about anything that might contradict this claim†.

†I will change my definition of RealWorldTM



Leopold Kronecker, Semi-Constructivist 4

Die ganzen Zahlen hat der liebe Gott
gemacht, alles andere ist Menschenwerk.

“Dear god” made the integers, everything
else is the work of men.



Coding 5

Write N⋆ for the set of all finite sequences of natural numbers and nil for the
empty sequence.

We would like to express a sequence a0, a1, . . . , an−1 ∈ N⋆ as a single number
⟨a0, a1, . . . , an−1⟩. So we need a coding function, a multiadic map of the form

⟨.⟩ : N∗ → N

that allows us to decode: from b = ⟨a0, a1, . . . , an−1⟩ we can recover n as well
as all the ai.

Note that any coding function must necessarily be injective. Moreover, both
the coding and decoding operations should be computationally cheap, at least
primitive recursive.



Decoding 6

Suppose

b = ⟨a0, a1, a2, . . . , an−1⟩

is some code number. Note that we have used 0-indexing to simplify notation
below.

We want a unary length function len : N → N that determines the length of
the coded sequence

len(b) = n

and a binary decoding function dec : N × N → N that extracts the
components:

dec(b, i) = ai

for all i = 0, . . . , n − 1 . Traditionally, dec(b, i) is written (b)i.



Computable Coding 7

Again, we need three functions:

⟨.⟩ : N⋆ → N

dec : N × N → N

len : N → N

In the set-theoretic universe, the existence of these functions is entirely trivial:
N⋆ is countable.

But we live in the computational universe: we need these functions to be easily
computable, and in particular primitive recursive. More precisely, we want dec
and len to be primitive recursive (⟨.⟩ is multiadic and simply cannot be
primitive recursive).



Sequence Numbers 8

The numbers of the form ⟨a0, a1, a2, . . . , an−1⟩ that appear as codes of
sequences are called sequence numbers.

Note that a priori len(x) need not be defined when x is not a sequence number.
The same is true for dec(x, i), plus i may be too large to make sense. Still, one
usually insists that both decoding functions are total and return some default
value like 0 for meaningless arguments.

Exercise
Suppose you are given dec and len. Can you check whether a number is a
sequence number?



Pairs 9

The first step is to select a pairing function, an injective map π : N × N → N .

More precisely, we are looking for 3 functions π : N × N → N , πi : N → N ,
i = 1, 2, such that

πi(π(x1, x2)) = xi

There are many possibilities, the following choice arguably yields one of the
most intuitive coding functions.

π(x, y) = 2x(2y + 1)

For instance
π(5, 27) = 32 · 55 = 1760 = 110111 000002



In Binary 10

Note that the binary expansion of π(x, y) looks like so:

ykyk−1 . . . y0 1︸ ︷︷ ︸
2y+1

00 . . . 0︸ ︷︷ ︸
x

where ykyk−1 . . . y0 is the standard binary expansion of y (yk is the most
significant digit). Hence the range of π is N+ (but not N).

This makes it easy to find the corresponding unpairing functions:

x = π1(π(x, y)) y = π2(π(x, y)).



Aside: Fueter-Pólya 11

Another popular pairing function is the quadratic polynomial due to Cantor:

p(x, y) = ((x + y)2 + 3x + y)/2

Note that this function is a bijection (unlike our exponential pairing function
which misses 0).

A surprising theorem by Fueter and Pólya from 1923 states that, up to a swap
of variables, this is the only quadratic polynomial that defines a bijection
N2 ↔ N.

The proof is rather difficult and uses the fact that ea is transcendental for
algebraic a ̸= 0.

It is an open problem whether there are other bijections for higher degree
polynomials. Extra Credit.



Extending to Sequences 12

⟨nil⟩ := 0
⟨a0, . . . , an−1⟩ := π(a0, ⟨a1, . . . , an−1⟩)

Here are some sequence numbers for this particular coding function:

⟨10⟩ = 1024
⟨0, 0, 0⟩ = 7

⟨1, 2, 3, 4, 5⟩ = 532754



It’s a Bijection 13

Lemma
⟨.⟩ : N∗ → N is a bijection.

Proof. Suppose
⟨a0, . . . , an−1⟩ = ⟨b0, . . . , bm−1⟩

We may safely assume 0 < n ≤ m (why?).
Since π is a pairing function, we get a0 = b0 and
⟨a1, . . . , an−1⟩ = ⟨b1, . . . , bm−1⟩.
By induction, ai = bi for all i = 1, . . . , n − 1 and 0 = ⟨nil⟩ = ⟨bn, . . . , bm−1⟩.
Hence n = m and our map is injective.

Exercise
Prove that the function is surjective.



Less formally . . . 14

Here is a sequence number and its binary expansion:

⟨2, 3, 5, 1⟩ = 20548
= 1 0︸︷︷︸

1

1 00000︸ ︷︷ ︸
5

1 000︸︷︷︸
3

1 00︸︷︷︸
2

So the number of 1’s (the digitsum) is just the length of the sequence, and the
spacing between the 1’s indicates the actual numerical values.

It follows that the coding function is injective and surjective, right?



That’s It! 15

We can now code any discrete structure as an integer by expressing it as a
nested list of natural numbers, and then applying the coding function.
For example, the so-called Petersen graph on the left is given by the nested list
on the right.

1

2

3 4

5

6

7

8 9

10

((1, 3), (1, 4), (2, 4), (2, 5), (3, 5),
(6, 7), (7, 8), (8, 9), (9, 10), (6, 10),
(1, 6), (2, 7), (3, 8), (4, 9), (5, 10))



Sequence Numbers 16

The edges have sequence numbers

34, 66, 258, 132, 260, 1028, 520, 4104, 16400,

65568, 16448, 131136, 65664, 262400, 1049088

Alas, the sequence number for this list is about

3.210742533937650 × 10485597

and has almost half a million digits. In the interest of brevity, we won’t write it
down.

Clearly, these coding techniques have nothing to do with algorithms, it is a tool
to explore the power and limits of computation.



Everything is PR 17

Exercise
Show that the pairing function π and both unpairing functions x = π1(π(x, y))
and y = π2(π(x, y)) are primitive recursive.

Exercise
Show that the length and decoding functions len and dec are primitive
recursive.

Exercise
Show that the coding function ⟨.⟩ is primitive recursive when restricted to
inputs of fixed length.



Recording History 18

One neat application of sequence numbers is course-of-value recursion. First
note that ordinary primitive recursion can be expressed in terms of sequence
numbers like so:

f(x, y) = z ⇐⇒ ∃ s ∈ Seq
(
len(s) = x+ ∧ (s)0 = g(y) ∧

∀ 0 ≤ i < x ((s)i+ = h(i, (s)i, y)) ∧ (s)x = z
)

Here x+ is shorthand for x + 1. The sequence number s records all previous
values of f . Now consider the following function f̂ associated with f :

f̂(x, y) := ⟨f(0, y), f(1, y), . . . , f(x, y)⟩

Lemma
f is primitive recursive iff f̂ is primitive recursive.



Course of Value Recursion 19

Thus, it is natural to generalize the primitive recursion scheme slightly by
defining functions so that the value at x depends directly on all the previous
values.

f(0, y) = g(y)

f(x+, y) = H(x, f̂(x, y), y)

Lemma
If g and H are primitive recursive then f is also primitive recursive.

Exercise
Prove the last two lemmata. You may safely assume that standard sequence
operations such as append are primitive recursive.



Sequence Operations 20

As always, having a data structure by itself is not particularly interesting, we
need to be able to implement operations. In our case, one can show that the
following operations on sequences are primitive recursive.

head, tail
concatenate
reverse
sort
map
sum, product

In fact, it would be quite difficult to come up with any example of an operation
used in a real program that fails to be primitive recursive.



Exercises 21

Exercise
Prove that all these functions are indeed primitive recursive.

Exercise
Explain how to implement search in binary search trees as a primitive recursive
operation.

Exercise
Come up with yet another coding function based on repeated application of a
pairing function (make sure your method really works).



1 Coding the World

2 Gödel’s β Function

3 Coding Systems



Gödel’s Approach 23

There is more elegant and slightly more elementary way to code sequence
numbers due to Gödel that he used in his famous incompleteness theorem.

For the sake of completeness, here is a brief description of Gödel’s method.



Gödel’s Trick 24

Perhaps the most obvious way to encode a sequence a = a0, . . . , an−1 is to use
the uniqueness of the prime decomposition:

⟨a⟩ = pa0+1
0 pa1+1

1 . . . p
an−1+1
n−1

where pi is the ith prime.

Alas, this requires the enumeration of primes and exponentiation, which may
not be available in weak systems of arithmetic.

Here is a more basic approach that avoids these tools, and uses the Chinese
Remainder Theorem instead. Define

β(x, y, i) = x (mod 1 + (i+1)y)

The hope is that, for the right choice of x and y, β(x, y, i) = ai.



CRT 25

To this end define

c = max(n, a0, . . . , an−1)
C = c!

Claim: The numbers 1 + (i+1)C, i < n, are all coprime.

Proof. If some prime p divides 1 + (i+1)C, it cannot divide C, so p > c. But
if p divides two of these numbers, then p divides their difference dC,
d < n ≤ c. Contradiction. 2

But then, by CRT, there is some a such that ai = a mod 1 + (i+1)C, and we
can choose a <

∏
1 + (i+1)C.



Sequence Numbers 26

We can then define a sequence number for a0, . . . , an−1 to be s = π(a, C) and
decode via

dec(s, i) = β(π1(s), π2(s), i)

We can set up a primitive recursive coding scheme as above by conducting
bounded searches for the various parameters. This involves factorials and is just
as demanding as exponentiation.

However, in some applications we only need the existence a sequence number,
and that can be handled more easily using Gödel’s approach.



Defining Exponentiation 27

Here is the key application: in a formal system of arithmetic providing just
addition and multiplication, we can also represent exponentiation.

E(a, b) = min
(

s | dec(s, 0) = 1 ∧ ∀ i < b (dec(s, i+1) = a · dec(s, i))
)

ab = dec(E(a, b), b)

The min operator is easily definable: ϕ(x) ∧ ∀ z < x ¬ϕ(z).
Here existence matters, but bounds do not.



Gödel’s Trick 28

To deal with sequences of arbitrary length one can use a clever divisibility
argument.

Lemma (Gödel)
There exists a primitive recursive function dec : N2 → N such that

∀ a0, . . . , an−1 ∃ a ∀ i < n (ai = dec(a, i)).

So a is a potential code number for a0, . . . , an−1

Proof. Set

dec(a, i) = min
(

x < a |
(
(π(x, i) + 1)π2(a) + 1

)
divides π1(a)

)
The idea is that the factors of π1(a) contain information about the ai.
We need to establish the existence of the witness a.



Proof, contd. 29

Let a0, . . . , an−1 arbitrary and set

c = max
(

π(ai, i) | i < n
)

C = (c − 1)!

p =
∏
i<n

((π(ai, i) + 1)C + 1)

a = π(p, C)

Note that ∀ i < j < c (iC + 1, jC + 1 coprime ).

But then

dec(a, i) = min
(

x < a | (π(x, i) + 1)C + 1 divides p
)

2



Sequence Numbers 30

Definition
Define a coding function ⟨.⟩ by

⟨x⟩ = min
(

a | dec(a, 0) = n ∧ ∀ i ∈ [n] (dec(a, i) = ai)
)

Also set lh(a) = dec(a, 0) and (a)i := dec(a, i).

Again, ⟨.⟩ is not primitive recursive, but we have:

Seq = { ⟨x⟩ | x ∈ N∗ } ⊆ N is primitive recursive.
The restriction to Nn is primitive recursive.
dec is primitive recursive.

Exercise
Prove this claim in detail.



1 Coding the World

2 Gödel’s β Function

3 Coding Systems



Coding in General 32

The examples of the coding function from the previous sections are by no
means exhaustive, even if one is interested only in functions that are fairly easy
to compute.

In general, one way to build a coding system is to

First define a pairing function, and
extend this pairing function to a full coding function.



Pairing Systems 33

Definition
A pairing system consists of

an injective function π : N × N → N , the pairing function
functions πi : N → N , i = 1, 2, the unpairing functions

where πi(π(x1, x2)) = xi for all xi.
The system is primitive recursive if the paring and unpairing functions as well
as the range of the pairing function are all primitive recursive.

The unpairing functions are only of interest only on the range of π; we will
generally assume that they are 0 everywhere else.

Note that this is not a problem for primitive recursive systems.



Orderings 34

Note that any pairing function induces a total order on N × N:

(a, b) ≺ (a′, b′) ⇐⇒ π(a, b) < π(a′, b′)

This provides a convenient method to construct pairing functions: find some
reasonable linear ordering on N × N and then engineer a corresponding
function.

We would like the function to be primitive recursive, so the ordering should be
fairly straightforward.



Cantor 35

For example, we could define the order to be

(a, b) ≺ (a′, b′) ⇐⇒ (a+b < a′+b′) ∨(
(a+b = a′+b′ ∧ (a, b) <p (a′, b′)

)

Here <p refers to the usual product order. So the first few pairs are

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . .

The corresponding pairing function is a simple quadratic polynomial:

π(x, y) = ((x + y)2 + 3x + y)/2

Note that this function is actually a bijection.



Picture 36



Exercises 37

Exercise
Explain the Cantor polynomial and show that function is indeed a bijection.

Exercise
Find simple descriptions for the corresponding unpairing functions.

Exercise
Show that the unpairing functions are primitive recursive.



Aside: Fueter-Pólya 38

A surprising theorem by Fueter and Pólya from 1923 states that, up to a swap
of variables, this is the only quadratic polynomial that defines a bijection
N2 ↔ N.

The proof is rather difficult and uses the fact that ea is transcendental for
algebraic a ̸= 0.

It is an open problem whether there are other bijections for higher degree
polynomials.
Extra Credit.



Another Pairing Function 39

We could replace sum by max in the pair ordering:

(a, b) ≺ (a′, b′) ⇐⇒ (max(a, b) < max(a′, b′)) ∨(
max(a, b) = max(a′, b′) ∧ (a, b) <p (a′, b′)

)

Again, <p refers to the usual product order. he first few pairs this time are

(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2), (0, 3), . . .

Somewhat similar to the last pairing function, but the picture looks quite
different.



Picture 40



Exercises 41

Exercise
Find the pairing function for the last order.

Exercise
Then determine the corresponding unpairing functions.

Exercise
Show that the unpairing functions are primitive recursive.



Even/Odd 42

The last two pairing functions are inspired by pair orderings. Then next one is
based on basic arithmetic instead: decomposing a number into an even and on
odd part.

π(x, y) = 2x(2y + 1)

Hence the range of π is N+ (but not N). The pairs this time look like so:

(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1), (0, 3), (3, 0), (0, 4), (1, 2), . . .

Much less intuitive than the previous cases.



Binary 43

To see why this pairing function is still quite natural consider the numbers in
binary. For example

π(5, 27) = 32 · 55 = 1760 = 110111 000002

In general, the binary expansion of π(x, y) looks like so:

ykyk−1 . . . y0 1 00 . . . 0︸ ︷︷ ︸
x

where ykyk−1 . . . y0 is the standard binary expansion of y (yk is the most
significant digit).

Exercise
Find the corresponding unpairing functions.



Picture (log plot) 44



Coding Systems 45

Definition
A coding system consists of three functions

⟨.⟩ : N⋆ → N
len : N → N
dec : N × N → N

For b = ⟨a1, a2, . . . , an⟩ we have n = len(b) and dec(b, i) = ai for all i ∈ [n].
⟨.⟩ is polyadic and called the coding function, len is the length function, and
dec is the decoding function. The range Seq of the coding function is the set
of sequence numbers.

Seq may be equal to N, but in general it will not be.



Decoding 46

To be more explicit about the decoding process, suppose

b = ⟨a1, a2, . . . , an⟩

is some sequence number. Then we can recover the length of the sequence via

len(b) = n

and the actual entries via that extracts the components:

dec(b, i) = ai

for all i = 0, . . . , n − 1 .

For simplicity we assume that len and dec are 0 outside of their relevant
domain of definition.



Computable Coding 47

Definition
A coding system is primitive recursive if the length and decoding functions, and
the sequence numbers are all primitive recursive.

Note that the coding function itself is polyadic, and thus cannot be primitive
recursive. In all interesting cases, the restrictions

⟨.⟩ : Nn → N

will be primitive recursive, though.

So the challenge is to come up with well-behaved primitive recursive coding
systems.



Sequence Numbers 48

Exercise
Show how to check if a number is a sequence number given dec and len.



Extending Pairs 49

Suppose we have a pairing system. The first step is to extend the pairing
function π to a map π̂ that is defined on all sequences of length at least 2:

π̂ : N≥2 −→ N

This comes down to declaring π to be, say, right associative:

π̂(x1, x2) = π(x1, x2)
π̂(x1, x2, . . . , xk) = π(x1, π̂(x2, . . . , xk))

Note that this map is not injective: let c = π(a, b), then π̂(a, c) = π̂(a, a, b).



Length Encoding 50

To avoid this issue, define

⟨nil⟩ := π(0, 0)
⟨a⟩ := π(1, a)

⟨a1, . . . , an⟩ := π(n, π̂(a2, . . . , an))

Here are some sequence numbers for this particular coding function:

⟨10⟩ = 1024
⟨0, 0, 0⟩ = 7

⟨1, 2, 3, 4, 5⟩ = 532754



It’s Decodable 51

Lemma
⟨.⟩ : N∗ → N is injective.

Proof. Suppose
⟨a1, . . . , a1⟩ = c = ⟨b1, . . . , bm⟩

Since π1(c) is the length of the sequence we can conclude that n = m.

But then π̂(a1, . . . , an) = π̂(b1, . . . , bn) and it follows that ai = bi. 2



Sans Length 52

Recall the even/odd pairing function

π(x, y) = 2x (2y + 1)

The range here is N+, so we don’t have a bijection. As it turns out, we can
exploit this produce a rather elegant coding function:

⟨nil⟩ := 0

⟨a1, . . . , an⟩ := π(a1, ⟨a2, . . . , an⟩)



It’s Decodable 53

Lemma
⟨.⟩ : N∗ → N is bijective.

Proof. Suppose
⟨a1, . . . , an⟩ = c = ⟨b1, . . . , bm⟩

We may safely assume that n ≤ m. If n = 0, then c = 0 and it follows that
m = 0 because the range of π does not contain 0.

So suppose 0 < c, 0 < n ≤ m. Since the range of π is all of N+ we have
a1 = π1(c) = b1, furthermore ⟨a2, . . . , an⟩ = π2(c) = ⟨b2, . . . , bn⟩.

Done by induction. 2



Less formally . . . 54

Here is a sequence number and its binary expansion:

⟨2, 3, 5, 1⟩ = 20548
= 1 0︸︷︷︸

1

1 00000︸ ︷︷ ︸
5

1 000︸︷︷︸
3

1 00︸︷︷︸
2

So the number of 1’s (the digitsum) is just the length of the sequence, and the
spacing between the 1’s indicates the actual numerical values.

It follows that the coding function is injective and surjective, right?



Everything is PR 55

Exercise
Show that the pairing function π and both unpairing functions x = π1(π(x, y))
and y = π2(π(x, y)) are primitive recursive.

Exercise
Show that the length and decoding functions len and dec are primitive
recursive.

Exercise
Show that the coding function ⟨.⟩ is primitive recursive when restricted to
inputs of fixed length.


	Coding the World
	Gödel's Beta Function
	Coding Systems

