Constructive Logic (15-317), Fall 2012
Assignment 10: Bracket Abstraction in Twelf

Carlo Angiuli (cangiuli@cs)

Out: Thursday, November 29, 2012
Due: Thursday, December 6, 2012 (before class)

By now, you've used Elf to encode arithmetic functions over dependent data and
the syntax of a deductive system, the simply-typed lambda calculus. This assignment
will continue on the path of encoding deductive systems. You will encode another
such system, the SKI combinator calculus, and give a translation between simply
typed lambda calculus terms and combinator terms.

Please write your code starting from the file bracket . el f released on the website.
Submit the written portions of this assignment as comments in your code.

Your code should be submitted via AFS by copying it to the directory

/afs/andrew/course/15/317/submit/<userid>/hwl®

where <userid> is replaced with your Andrew ID. Your solutions should work in
the version of Twelf installed in the course directory.

1 Combinators (20 points)

In the lambda calculus, there are two ways to form compound terms: lambda ab-
straction and application. These correspond to the introduction and elimination
rules for O in natural deduction. The SKI combinator calculus is a system that can be
used to construct the same sorts of programs, but where application is the only term
constructor. To make up for lacking A, it has three constants (called combinators)
whose types happen to yield the same expressive power:

e S:(t>0—p) —(t—0)—>(t—p)
e Kit— (0—1)

o |l:T—> 7

The file bracket.elf contains an encoding of the following grammar for combi-
nator terms.

C == b|S|K|I|C@C
The typing judgment C : T on combinator terms is defined as follows.

of /I of /K
l:71>71 K:t—>(0—>1)

of /S
S:(t—>0—-p)=(t—0)—=>(1—p)

Writing the combinator application of function C; to argument C, as C;@C,, the
typing rule is as usual:
Ci:t—>17 Cr:t
C1@C; : (o

Finally, we include a combinator base term b to match the base term of the lambda
calculus, with the same typing rule.

cof /app

— cof/b
b:o /

Task 1 (5 points). Give combinator terms inhabiting the following types:
l.p>(t—>0—-71)
2. (t—>p)—>(t—>0—>p)
3. 7 — 1, without using I.

Task 2 (5 points). Encode the static semantics of combinators in Twelf according to
the above rules as a judgment cof : comb -> tp -> type.

Combinators, like lambda terms, have a dynamic semantics, but it works a little
differently. A lambda term can be partially applied, whereas each combinator must
be applied to all of its arguments before it fires.

—— cstep/| —— cstep/K
acoc P caaes o a S

cstep/S
S@A@B@C — (A@C)@(B@C)

There is one compatibility rule.

A A

— cstep/a
AGB — A'@p PP

Task 3 (10 points). Encode the dynamic semantics of combinators in Twelf as a
judgment cstep : comb -> comb -> type.

2 Translation from STLC (20 points)

For this assignment, we will define one direction of correspondence between these
systems: lambda terms to combinators. Let tr(e) = C mean that the lambda term e
translates to a combinator term C.

Translating the base term and application is straightforward, since we have those
constructs in both systems.

b
tr(el)@tr(e2)

tr(b)

tr(e ep)

Translating a lambda term is where all the action is. For this translation, we need
to define an auxiliary function (-).

tr(Ax:te) = (x)tr(e)

(—)—is the bracket abstraction function. We canread (x)C as encoding the abstraction
of combinator variable x from combinator term C. But, of course, the grammar of
combinators doesn’t include variables — they are purely an auxilliary notion, and the
process of bracket abstraction must end with their absence.

Bracket abstraction is defined as follows.

yx = |
x)C = KaeaC (x not free in C)
(C1@C) = (S@((x)C1))@((x)C)

Note that, critically, the second rule covers combinator variables different from x.
Task 4 (10 points). Encode (—)— as a Twelf judgment

bracket : (comb -> comb) -> comb -> type.

Task 5 (10 points). Encode tr(—) = — as a Twelf judgment

translate : term -> comb -> type.

	Combinators (20 points)
	Translation from STLC (20 points)

