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15-395: Lab # 4 
Implementing a Job Control Shell 

 
 
Times of Interest: 
 

• Class on Tuesday, October 2, 2007 – Assignment distributed  
• 11:59PM,  Thursday, October 25, 2007 – Assignment submission deadline 

 
 
Educational Objectives: 
 
For many people this project will be practice and/or a warm-up. For others, it will be a learning 
exercise. Regardless of your background, by the end of this project, we hope that you will 
comfortably and confidently be able to do the following: 
 

• Develop clear, readable, well-documented and well-designed programs in the C 
Programming Language. 

• Develop software in the Andrew/Unix using tools such as gcc, gdb, and make. 
• Locate and interpreting “man pages” applicable to application-level system 

programming.  
• Use the POSIX/Solaris API to system functions to manage process and sessions as 

well as use signals and pipes for inter-process communication.  
• Understanding how synchronization might become problematic in light of 

concurrency.  
• Understand how to communicate and cooperate with a project partner. 

 
 
Project Overview 
 
In this project you are asked to implement a simple command-interpreter, a.k.a. “shell,” for Unix. 
The shell that you will implement, known as xsh, should be similar to popular shells such as 
bash, csh, tcsh, zsh, &c, but it is not required to implement as many features as these 
commercial-grade products.  
 
Although we don’t require all of the “bells and whistles” that are incorporated into commercial-
grade products, xsh should have much of the important functionality: 
 

• Allow the user to execute one or more programs, from executable files on the file-system, 
as background or foreground jobs. 

• Provide job-control, including a job list and tools for changing the 
foreground/background status of currently running jobs and job 
suspension/continuation/termination. 

• Allow for the piping of several tasks as well as input and output redirection.  
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With respect to the other programming projects, past, present, and future, this may well be a 
small project, but we want you to approach it as if it is a bigger and more complex project so that 
you are prepared for the big ones. Specifically, we’d like you to do the following: 
 

• Use the make utility to build your project  
• Use a debugger instead of print-and-hunt debugging whenever practical.  
• Produce clean, well-documented, and well-designed solutions.  

 
 
Specification 
 

Form 
 
Your solution should be an application program invoked without command-line 
parameters or configuration files, &c. If you want to be fancy and support for a resource 
file similar to those used with commercial-grade shells, e.g. .cshrc, you’re a welcome to 
do this. But, like csh, your shell should function correctly in absence of this file.   
 
 
Look-and-Feel 
 
The look and feel of xsh should be similar to that of other UNIX shells, such as bash, 
tcsh, csh, &c. For example, your shell’s work loop should produce a prompt, e.g., xsh>, 
accept input from the user, and then produce another prompt. Messages should be written 
to the screen as necessary, and the prompt should be delayed when user input shouldn’t 
be accepted, as necessary. Needless to say, your shell should take appropriate action in 
response to the user’s input.  
 
Internal Commands vs. External Programs 
 
In most cases, the user’s input will be a command to execute programs stored within a 
file system. We’ll call these external programs. Your shell should allow these programs 
to execute with stdin and/or stdout reassigned to a file. It should allow programs I/O to be 
chained together using pipes. For our purposes, a collection of piped processes or a single 
process executed by itself  from the command line is called a job.  
 
When executing backgrounds jobs, the shell should not wait for the job to finish before 
prompting, reading, and processing the next command. When a background job finally 
terminates a message to that effect must be printed, by the shell, to the terminal. This 
message should be printed as soon as the job terminates. The syntax for doing this will be 
described in the section of this document describing the shell’s parser. 
 
Your parser should also support several internal commands these commands, if issued by 
the user, should direct the shell to take a particular action itself instead of directing it to 
execute other programs. The details of this are discussed in the section describing internal 
commands.  
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Foreground vs. Background Jobs 
 
Your shell should be capable of executing both foreground and background jobs. 
Whereas your shell should wait for foreground jobs to complete before continuing, it 
should immediately continue, prompt the user, &c, after placing a job into the 
background. 
 
Your shell should print a message immediately when a background job terminates. This is 
a different behavior than most commercial shells. But, it ensure that you handle signals in 
a certain way, so we are requiring this.  
 
Command lines 
 
When the user responds to a prompt, what they type composes a command line string.  
Your shell should store each command-line string, until the job is finished executing. 
This includes both background and suspended jobs. 
 
The shell should assign each command-line string a non-negative integer identifier. The 
data structure used to store the jobs should allow access to each element using this 
identifier. Once the actions directed by a command-line string are completed, your shell 
should remove it from the data structure. Identifiers can be recycled if you choose. Please 
note that this data structure should keep track of whole command line strings, not just the 
names of the individual tasks that may compose them. 
 
You should not keep track of command line strings that contain internal commands, 
since, by their nature, they will complete before this information could become useful. 
 
Internal Commands 

 
The following are the internal commands. If an internal command is submitted by the 
user, the shell should take the described actions itself.   

 
• exit: Kill all child processes and exit xsh with a meaningful return code.   
• jobs: Print out the command line strings for jobs that are currently executing in the 

background and jobs that are currently suspended, as well as the identifier associated 
with each command line string. You may format the output of this command in way 
that is convenient to the user. Please remember that jobs itself is an internal command 
and consequently should not appear in the output.  

• echo $?: Prints the exit status of the most recent foreground child process to have 
exited. Return 0 if no such child has existed.  

• fg %<int>: Brings the job identified by <int> into the foreground. If this job was 
previously stopped, it should now be running. Your shell should wait for a foregound 
child to terminate before returning a command prompt or taking any other action. 

• bg %<int>: Execute the suspended job identified by <int> in the background. 
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• Internal commands can take advantage of piped I/O, execute in the background, &c, 
as appropriate.  

 
  
Special Keystrokes 

 
Through an interaction with the terminal driver, certain combinations of keystrokes will 
generate signals to your shell instead of appearing within stdin. Your shell should 
respond appropriately to these signals.  

 
• Control-Z generates a SIGSTOP. This should not cause your shell to be suspended. 

Instead, it should cause your shell to suspend the processes in the current foreground 
job. If there is no foreground job, it should have no effect. 

• Control-C generates a SIGINT. This should not kill your shell. Instead it should cause 
your shell to kill the processes in the current foreground job. If there is no foreground 
job, it should have no effect.  

 
Parsing User Input – Overview, Delimiters and Special Characters 

 
Your parser should be generated using (f)lex and yacc/bison. It should be capable of 
accepting input from the user as described in this section. It should also detect improper 
input from the user. If the user enters something improper, your shell should produce a 
meaningful error message. 
 
Just like commercial-grade shells, your shell should accept input from the user one line at 
a time. You should begin parsing the users input when he/she hits enter. Empty command 
lines should be treated as no-ops and yield a new prompt.  
 
Blank-space characters should be treated as delimiters, but your shell should be 
insensitive to repeated blank spaces. It should also be insensitive to blank spaces at the 
beginning or end of the command line.  
 
Certain characters, known as meta-characters, have special meanings within the context 
of user input. These characters include &, |, <, and >. Your shell can assume that these 
meta-characters cannot occur inside strings representing programs, arguments, or files. 
Instead they are reserved for use by the shell. The purpose of meta-characters is discussed 
later in this section.  
 
Parsing User Input – Internal Commands 
 
If the command line matches the format of an internal command as described earlier in 
this document, it should be accepted as an internal command.  If not, it should be 
considered to specify the execution of external programs, or an error, as appropriate.  
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 Parsing User Input – Executing A Single Program 
 

The execution of a  program is specified by a sequence of delimited strings. The first of 
these is the name of the executable file that contains the desired program (modulo a 
search path as explained in the execvp man page, see man -s 2 execvp) and the others 
are arguments passed to the program. The command is an error if the executable file 
named by the first string does not exist, or is not an executable.  
 
Paring User Input – I/O Redirection 
 
A program's execution specified as above may be followed by the meta-character <  or > 
which is in turn followed by a file name. In the case of <, the input of the program will be 
redirected from the specified file name. In the case of >, the output of the program will be 
redirected to the specified file name. If the output file does not exist, it should be created. 
If the input file does not exist, this is an error. 
 
Parsing User Input – Pipes and Cooperating Programs 
 
Several program invocations can be present in a single command line, when separated by 
the shell meta-character ``|''. In this case, the shell should fork all of them, chaining their 
outputs and inputs using pipes appropriately. For instance, the command line  

 
progA argA1 argA2 < infile | progB argB1 > outfile  

 
should fork progA and progB, make the input for progA come from file infile, the 
output from progA go to the input of progB, and the output of progB go to the file 
outfile. This should be accomplished using a pipe IPC primative.  
 
A command line with one or more ``pipes'' is an error if any of its component program 
invocations is an error. A command line with ``pipes'' is an error if the input of any but 
the first command is redirected, or if the output of any but the last command is redirected. 
A job consisting of  piped processes is not considered to have completed until all of its 
component processes have completed. 

 
 Parsing User Input – Background Jobs 
 

The user can specify that a job should be executed in the background by ending the 
command line with the meta-character &. If this is the case, all program invocations 
required by the command line are to be carried out in the background.  
  
Parsing User Input – A Grammar 

 
The grammar below provides a more formal description of the syntax governing user 
input. It is the same one you saw – and converted into a yacc-able form – for your last 
assignment. This grammar doesn’t include the special keystrokes, because they won’t 
show up in stdin as user input and should be handled separately. 
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A CommandLine is legal input provided by the user, as a direction to the shell, in response 
to the prompt. The grammar assumes that the existence of a lexical analyzer that 
considers blank-space to be a delimiter, recognizes the meta-characters as tokens, &c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
CommandLine    :=   NULL 

FgCommandLine 
FgCommandLine & 

 
FgCommandLine  :=   SimpleCommand 

FirstCommand MidCommand LastCommand 
 

SimpleCommand  :=   ProgInvocation InputRedirect OutputRedirect 
 

FirstCommand   :=   ProgInvocation InputRedirect 
 

MidCommand     := NULL 
                      | ProgInvocation MidCommand 
 

LastCommand    :=   | ProgInvocation OutputRedirect 
           

ProgInvocation :=   ExecFile Args 
 

InputRedirect  :=  NULL 
                    < STRING 

 
OutputRedirect :=   NULL 

> STRING 
 

ExecFile       :=   STRING 
 
Args           :=    NULL 

STRING Args 
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A Suggested Plan Of Attack 
 

1) Read the man pages for fork, exec, wait and exit.  
2) Write a few small programs to experiment with these commands. 
3) Read the man pages for tcsetgrp() and setpgid() 
4) Write some code to experiment with process groups, &c. Pay attention to SIGTTIN & 

SIGTTOU. 
5) Take the parser from your last assignment and flesh it out a bit for this one. I particular, 

think about the data structures that you’ll need to build and the helper functions you’ll 
need to call. Start to stub these out.  

6) Using your parser, write a simple shell that can execute single commands. 
7) Add support for running programs in the background, but don’t worry about printing the 

message when a background job terminates (asynchronous notification). Add the jobs 
command while you are doing this – it may prove helpful for debugging.  

8) Add input and output redirection  
9) Add code to print a message when a background job terminates. 
10) Add job control features - implement the behavior of Control-Z (and, if applicable, 

CONTROL-C), fg and bg. 
11) Add support for pipes. 
12) Finish up all of the details 
13) Test, test test. 
14) Celebrate 

 
Deliverables 
 

• You should electronically submit the following items into your group’s submission 
directory before the project deadline: 

o A Makefile.  
o Source files that compile, by typing make, into an executable of name xsh. 
o Optionally, a file of name README that contains anything you wish to point out to 

us. 
 

• Soon after everyone is part of a group, we will be creating the following directory for you 
to submit your work: 

 
/afs/andrew.cmu.edu/course/15/395/handin/lab4/andrewid1-andrewid2 
 

 
The Project Review 
 
After you submit your project, a member of the staff will review it. He or she will test your code 
to determine its completeness and correctness. He or she will also examine your source code to 
understand how you designed and implemented your solution, as well as the reason for any 
failures during the testing. 
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The grader will then meet with your group to discuss the project. During this meeting the grader 
will clear up any questions he or she may have about your project, discuss any problems that 
were found, and check to make sure that both members of your group seem to be knowledgeable. 
This is also your opportunity to get answers to any questions you might have. If you run out of 
time, please schedule a follow-up meeting.   
 
You’ll receive mail from your grader to schedule a review soon after you’ve submitted your 
project. Feel free to e-mail ahead with specific questions, things you’d like to discuss, or to 
request more time. We’re here to help! 
 
It is important to understand that your grade won’t be determined until after this meeting. In 
order to standardize grading, projects are graded at a meeting when the entire staff is present.  
 
Matchmaking  
 
If you are having difficulties finding a partner, please send me (gkesden+@cs.cmu.edu) mail and 
I will try to play the part of a matchmaker. Please do try to find a partner before you do this.  

Environment  

Whereas you can do this assignment on any UNIX, it must run on the Andrew UNIX 
machines for your demo.  

Although you can solve this assignment in your choice of languages, it would probably 
be more difficult in anything other than C, or perhaps C++.  For future projects you'll 
almost certainly have to use C or C++.   

Some Useful Information (Some of which is a review)  
 
System Calls 
 
You have probably already heard the term “System Call.” Do you know what it means? As its 
name implies, a system call is a “call”, that is, a transfer of control from one instruction to a 
distant instruction. A system call is different from a regular procedure call in that the callee is 
executed in a privileged state, i.e, that the callee is within the operating system.  
 
Because, for security and sanity, calls into the operating system must be carefully controlled, 
there is a well-defined and limited set of system calls. This restriction is enforced by the 
hardware through trap vectors: only those OS addresses entered, at boot time, into the trap 
(interrupt) vector are valid destinations of a system call. Thus, a system call is a call that 
trespasses a protection boundary in a controlled manner.  
 
Since the process abstraction is maintained by the OS, xsh will need to make calls into the OS in 
order to control its child processes. These calls are system calls. In UNIX, you can distinguish 
system calls from user-level library (programmer's API) calls because system calls appear in 
section 2 of the ``manual'', whereas user-level calls appear in section 3 of the ``manual''. The 
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``manual'' is, in UNIX, what you get when you use the ``man'' command. For example, man 
fork will get you the ``man page'' in section 2 of the manual that describes the fork() syscall, 
and man -s 2 exec will get you the ``man page'' that describes the family of ``exec'' syscalls (a 
syscall, hence -s 2.)  
 
The following UNIX syscalls may prove to be especially useful in your solution to this project. 
There are plenty of others, so you may find “man” and good reference books useful, especially if 
you are new to system programming. 
 

• pid_t fork(void): It creates a process that is an almost-exact copy of the calling 
process; in particular, after a successful return from fork(), both parent and child 
processes are executing the same program. The two processes can be distinguished by 
the return value from fork().  

• int execvp(const char * file, char * const argv[]): Loads the executable file path, or 
a file found through a search path, into the memory associated with the calling 
process, and starts executing the program therein. If successful, it obliterates whatever 
program is currently running in the calling process. There are several other, similar 
forms of exec. 

• void exit(int status): Exits the calling program, destroying the calling process. It 
returns status as the exit value to the parent, should the parent be interested. The 
parent receives this exit value through the wait syscall, below. Note that the linker 
introduces an exit() call at the end of every program, for instance, at the end of a C 
main procedure, even if the C code doesn't explicitly have one.  

• pid_t wait(int *stat_loc): Returns the exit status of an exited child, if any. Returns 
error if there are no children running. Blocks the calling process until a child exits if 
there are children but they are all currently running.  

• pid_t waitpid(pid_t pid, int *stat_loc, int options): Similar to wait() but allows 
you to wait for a specific process of group of processes, and allows the specification 
of flags such as WNOHANG.  

• wait3(...), wait4(...): Similar to wait() but allow different combinations of 
parameters and flags.  

• int tcsetpgrp(int fildes, pid_t pgid_id): Sets the foreground process group id to be 
the foreground group associated with the controlling terminal. The controlling 
terminal is usually associated with stdin, stdout, and stderr (file descriptors 0, 1, and 
2)  

• int setpgid(pid_t pid, pid_t pgid): Sets the process group ID of the process  with  ID 
pid to pgid. 

• int dup2 (int filedes, int filedes2): Causes the file descriptor filedes2 to refer to the 
same file as filedes.  

• int pipe(int filedes[2]): Creates a pipe, placing the file descriptors into the supplied 
array of two filedescriptors. 
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Process Creation  

To create a new process we use the fork() system call. The fork system call 
actually clones the calling process, with very few differences. The clone has a 
different process id  (PID) and parent process id (PPID). There are some other 
minor differences, see the man page for details.  

The return value of the fork() is the only way that the process can tell if it is the 
parent or the child (the child is the new one).  The fork returns the PID of the 
child to the parent and 0 to the child. This subtle difference allows the two 
separate processes to take two different paths, if necessary.  

The wait_() family of functions allows a parent process to wait for a child process 
to complete. You may want to do this when you create a foreground process form 
your shell.  

It is important to note that the wait_() family of functions returns any time the 
child changes status -- not just when it rolls over or exits. Many status changes 
you may want to ignore. You may also want to take a look at some of the flags in 
the man page for waitpid(), you may find WNOHANG, and others helpful. 
(WNOHANG makes the wait non-blocking, if there's no news -- it just lets you 
collect information, if available)  

The following example shows a waitpid(). It waits for a specific child. wait() will 
wait for any child. There are several other flavors. We'll discuss more about what 
the execve() within the child does shortly. 
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    int main(int argc, char *argv[]) 
    { 
      int status; 
      int pid; 
      char *prog_arv[4]; 
 
      /* Build argument list */ 
 
      prog_argv[0] = "/usr/local/bin/ls"; 
      prog_argv[1] = "-l"; 
      prog_argv[2] = "/"; 
      prog_argv[3] = NULL; 
 
      /* 
       * Create a process space for the ls   
       */ 
      if ((pid=fork()) < 0) 
      { 
        perror ("Fork failed"); 
        exit(errno); 
      } 
 
      if (!pid) 
      { 
        /* This is the child, so execute the ls */  
        execvp (prog_argv[0], prog_argv); 
      } 
 
      if (pid) 
      { 
        /*  
         * We're in the parent; let's wait for the child to finish 
         */ 
        waitpid (pid, NULL, 0); 
      } 
    } 
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It is important for  your shells to wait for the children that they create. This can  
either be done in a blocking fashion for foreground processes, or in a non-
blocking fashion (WNOHANG) when the child signals. Although many of the 
resources composing a process are freed when it dies, the process control 
block(PCB), or at least some of its information, is not. The PCB contains status 
information that the parent can collect via wait_(). A process that is in this state is 
called defunct. After the wait_(), the PCB is freed. If the parent dies before the 
child, the child is reparented to the init() process which will perform a wait_() for 
any such process, allowing the PCB to be freed. Orphan process that are waiting 
for init to clean them up are called zombies.  

What If I Don't Want A Clone?  

The exec_() family of calls allows a process to substitute another program for 
itself. Typically a program will call fork() to generate a duplicate copy of itself 
and the child will call an exec_() function to start another process.  

There are several different flavors of exec_(). They all boil down to the same call 
within the kernel. One parameterization may be more or less convenient from 
time-to-time.  

An exec'd process isn't completely different from the calling process. It does 
inherit some things, PPID, GID, and signal mask, but not signal handlers. Please 
see the man page for the details.  

The exec_() functions do not return (a new process is now in charge). At least it is 
fair to say tat if they do return, something bad has happened.  

 The previous example code also illustrates execvp(). 

I/O Redirection  

To implement I/O redirection, you'll need to use the dup2() function:  

int dup2(int fildes, int fildes2);   

Each process contains a table with one entry for each open file. This table 
contains some information about the state of the open file, such as the current 
offset into the file (the location where the next operation will occur). It also 
contains a pointer to the system-wide open file table.  
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This table contains exactly one entry for each open file in the system. If multiple 
processes have the same file open, the corresponding entry in each process's file 
descriptor table will point to the same entry in the system-wide open file table. 
This table contains some information about the file, including a count of how 
many processes currently have it open. It also contains a pointer to the file's 
inode, the data structure that associates a file with its physical storage on disk. 
We'll talk more about this when we get to file systems.  

It is also important to realize that many non-files use the same interface, although 
they operate differently under the hood. For example, in many ways, terminals 
can be manipulated as if they were files.  By default the first three entries in each 
process's open file table are open and reference the terminal: stdin (0), stdout(1), 
and stderr(2).  

To perform I/O redirection, we open a file and then copy this file's file descriptor 
entry over either standard in or standard out (or standard error). If we need to 
restore the original entry later, we need to save it in another entry in the table.  

The following is an example of I/O redirection. 

#include <stdio.h> 
#include <unistd.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <fcntl.h> 
     
    int main(int argc, char *argv[]) 
    { 
      int in; 
      int out; 
      size_t got; 
      char buffer[1024]; 
 
      in = open (argv[1], O_RDONLY); 
      out = open (argv[2], O_TRUNC | O_CREAT | O_WRONLY, 0666); 
 
      if ((in <= 0) || (out <= 0)) 
      { 
        fprintf (stderr, "Couldn't open a file\n"); 
        exit (errno); 
      } 
 
      dup2 (in, 0); 
      dup2 (out, 1); 
       
      close (in); 
      close (out); 
 
      while (1) 
      { 
        got = fread (buffer, 1, 1024, stdin);   
        if (got <=0) break; 
        fwrite (buffer, got, 1, stdout); 
      } 
    }  
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Signals  

Signals are the simplest primitive for interprocess communication (IPC). We'll 
talk more about these tools later in the semester.  

Signals allow one process to communicate the occurance of an event to another 
process. The number of the signal indicates which event occured. No other 
information can be communicated via signals.  

But signals will be very important in this project. They will indicate changes in 
the state of a child background process -- such as its termination, and other 
important events....that its time for a process to sleep, for example.  

When a process receives a signal, it can take an action. Many signals have a 
default action.  For example, certain signals, by default, cause core dumps, or 
process's to suspend themselves.   

We can also specify how we want our process to handle a particular signal 
(Except for KILL, which isn't really a signal, although it looks like one to the 
programmer). We do this by specifying a signal handler.  

The following is an example of a signal handler:  

 

 

 

 

 

 

 

 

 

 

 

/* 
 * This example shows a "signal action function" 
 * Send the child various signals and observe operation. 
 * 
 */ 
void ChildHandler (int sig, siginfo_t *sip, void *notused) 
{ 
  int status; 
 
    printf ("The process generating the signal is PID: %d\n",  
             sip->si_pid); 
    fflush (stdout); 
 
    status = 0; 
    /* The WNOHANG flag means that if there's no news, we don't wait*/ 
    if (sip->si_pid == waitpid (sip->si_pid, &status, WNOHANG)) 
    { 
        /* A SIGCHLD doesn't necessarily mean death - a quick check */ 
        if (WIFEXITED(status)|| WTERMSIG(status)) 
          printf ("The child is gone\n"); /* dead */ 
        else 
          printf ("Uninteresting\n"); /* alive */ 
    } 
    else 
    { 
      /* If there's no news, we're probably not interested, either */ 
      printf ("Uninteresting\n"); 
    } 
} 

(cont) 
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Pipes  

Pipes are a more sophisticated IPC tool. They allow for a one-way flow of data 
from one process to another. (Okay -- SYSVR4 pipes can be bidirectional, but 
we'll stick to Posix pipes for this discussion).  

We'll talk more about pipes later in the semester, but here's the basic idea. A pipe 
is basically a circular buffer that hides in the file system. We use it in a producer-
consumer fashion. One process writes to the pipe, and blocks if the buffer 
becomes full. Another process reads from the pipe and blcoks if it becomes 
empty. A read will fail if the producer closes  the pipe or dies. And a write will 
fail if the consumer closes the pipe or dies.  

Here's how it works. We create a pipe in the parent process using the pipe() 
system call, by passing it an array of two file descriptors: pfd[0] and pfd[1].  

1. Much like file descriptor 0, we will use pfd[0] for input. And we will use 
pfd[1] for output.  

2. We fork and create a child.  
3. Now the child and the parent both share the pipe file descriptors. Each will 

close one side of the pipe (which side depends on whether they will be 
reading or writing.  

(from previous page) 
 
int main() 
{ 
 
  struct sigaction action; 
 
  action.sa_sigaction = ChildHandler; /* Note use of sigaction, not     
                                         handler */ 
  sigfillset (&action.sa_mask); 
  action.sa_flags = SA_SIGINFO; /* Note flag,otherwise NULL in 
function*/ 
  
  sigaction (SIGCHLD, &action, NULL); 
 
  fork(); 
 
  while (1) 
  { 
    printf ("PID: %d\n", getpid()); 
    sleep(1); 
  } 
} 
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4. Next each process will use dup2 to copy the open pipe file descriptor over 
stdin or stdout, as appropriate. We then close the pipe file descriptors, 
since they are no longer needed. (If we will later need to restore stdin, or 
stdout, they should be saved, as we discussed with redirection).  

5. Now the two processes can communicate using the pipe via stdin and 
stdout.  

If we do this in between the time we fork and we exec_(), we can tie processes 
together using pipes -- even though they are ignorantly communicating using 
stdin and stdout.  

 

Here’s a simple example establishing a pipe: 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

int main(int argc, char *argv[]) 
    { 
      int status; 
      int pid[2]; 
      int pipe_fd[2]; 
 
      char *prog1_argv[4]; 
      char *prog2_argv[2]; 
 
      /* Build argument list */ 
      prog1_argv[0] = "/usr/local/bin/ls"; 
      prog1_argv[1] = "-l"; 
      prog1_argv[2] = "/"; 
      prog1_argv[3] = NULL; 
 
      prog2_argv[0] = "/usr/ucb/more"; 
      prog2_argv[1] = NULL; 
 
(cont) 
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(from prior page) 
 
/* Create the pipe */ 

      if (pipe(pipe_fd) < 0) 
      { 
        perror ("pipe failed"); 
        exit (errno);             
      } 
 
      /* Create a process space for the ls */ 
      if ((pid[0]=fork()) < 0) 
      { 
        perror ("Fork failed"); 
        exit(errno); 
      } 
       
      if (!pid[0]) 
      { 
          /* 
           * Set stdout to pipe      
           */ 
          close (pipe_fd[0]); 
          dup2 (pipe_fd[1], 1); 
          close (pipe_fd[1]); 
 
        /* Execute the ls */  
        execvp (prog1_argv[0], prog1_argv); 
      } 
 
      if (pid[0]) 
      { 
        /* We're in the parent */ 
        /* Create a process space for the more */ 
        if ((pid[1]=fork()) < 0) 
        { 
          perror ("Fork failed"); 
          exit(errno); 
        } 
         
        if (!pid[1]) 
        { 
          /* We're in the child */ 
 
          /* Set stdin to pipe */ 
          close (pipe_fd[1]); 
          dup2 (pipe_fd[0], 0); 
          close (pipe_fd[0]); 
 
          /* Execute the more */  
          execvp (prog2_argv[0], prog2_argv); 
        } 
        
        /* This is the parent */ 
        close(pipe_fd[0]); 
 close(pipe_fd[1]); 
  
 waitpid (pid[1], &status, 0); 
 printf (“Done waiting for more.\n”); 
      } 

    } 
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 Process Groups, Sessions, and Job Control   

When we log into a system, the operating system allocates a terminal for our 
session. A session is an environment for processes that is (or at least can be) 
associated with one controlling terminal.   

Our shell is placed into the foreground process group within this session. A 
process group is a collection of one process or of related processes -- they are 
usually related by one or more pipes. At most, one terminal can be associated with 
a process group. The foreground process group is the group within a session that 
currently has access to the controlling terminal. Since there is only one controlling 
terminal per session, there can only be one foreground process group. 

Processes in the foreground process group have access to the stdin and stdout 
associated with the terminal. It also means that certain key combinations, cause 
the terminal driver to send signals to all processes in the foreground process 
group. In the case of CONTROL-C, SIGINT is sent to each process. In the case of 
CONTROL-Z, SIGTSTP is sent to each process. These key combinations do not 
result in character being placed in stdin. 

There can also be background process groups. These are process groups that do 
not currently have access to the sessions controlling terminal. Since they don’t 
have access to the controlling terminal, they can't perform terminal I/O to/from 
the controlling terminal. If a background process tries to interact with the 
controlling terminal, it is sent a SIGTTOU or SIGTTIN, as appropriate. By 
default, these signals act like a SIGTSTP and suspend the process. The parent 
process (the shell) is notified about this change, much like it would be if the child 
process received a SIGTSTP, died, &c. It can discover these changes through the 
status returned by wait().  Your shell will have to handle these changes in its 
children. 

Processes are placed into process groups using the setpgid() function. Process 
groups are named by the PID of the group leader. The group leader is the first 
process to create a group -- it's PID becomes the GID. The group leader can die 
and the group can remain.  

A group becomes the foreground group using the tcsetpgrp() call. This call makes 
the specified group the foreground group. It can affect itself or any of its children.  

If a process forms a new session by calling setsid(), it becomes both a session 
leader and a group leader. For a new session to interact with a terminal, it must 
allocate a new one -- you won't need to create a new session or allocate a 
terminal. Instead, exec (“exec xsh”) your xsh from the login shell (csh, sh, bash, 
csh, etc). This will replace the original shell with your shell, making your shell the 
only process in the foreground process group. 
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You will have to create process groups, and manipulate the foreground process 
group to make sure the right process group is the current foreground process 
(which could be your shell).  

By making the right group the foreground process group, you are not only 
ensuring that it has a connection to the terminal for stdin, stdout, and stderror, but 
you are also ensuring that every process in the foreground group will receive 
terminal control signals like SIGTSTP.  

Please remember that you have a choice in this project – you can take the short-
cut. But either way, we’d like you to understand how this works. If you do take 
the shortcut, you can leave all of the child processes in the same group as the shell 
and masked SIGTSTP when they are created, so that only the shell can recieve it. 
The shell can then propogate the equivalent (but unmaskable) SIGSTOP to the 
appropriate children. The approach falls apart, for example, if you want to try to 
run your shell form within your shell – but it is good enough for this project. 
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Here’s an example that illustrates tcsetgrp() and setpgrp(): 

   

 

 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include <stdio.h> 
#include <signal.h> 
#include <stddef.h> 
#include <sys/wait.h> 
#include <sys/ioctl.h> 
#include <sys/termios.h> 
 
/* NOTE: This example illustrates tcsetgrp() and setpgrp(), but doesn’t 
function correctly because SIGTTIN and SIGTTOU aren’t handled.*/ 
 
int main() 
{ 
  int status; 
  int cpid; 
  int ppid; 
  char buf[256]; 
  sigset_t blocked; 
 
  ppid = getpid(); 
 
 
if (!(cpid=fork())) 
  { 
    setpgid(0,0); 
    tcsetpgrp (0, getpid()); 
    execl ("/bin/vi", "vi", NULL); 
    exit (-1); 
  } 
   
  if (cpid < 0) 
    exit(-1); 
 
 
  setpgid(cpid, cpid); 
  tcsetpgrp (0, cpid); 
 
  waitpid (cpid, NULL, 0); 
 
  tcsetpgrp (0, ppid); 
 
  while (1) 
  { 
    memset (buf, 0, 256); 
    fgets (buf, 256, stdin); 
    puts ("ECHO: "); 
    puts (buf); 
    puts ("\n"); 
  } 
} 
 


