
1

Spring Programming Competition – Practice Round

March 26, 2010

You can program in C, C++, or Java; note that the judges will re-compile your programs

before testing.

Your programs should read the test data from the standard input and write results to the

standard output; you should not use files for input or output.

All communications with the judges should be through the PC
2
 environment.

Each problem’s estimated level of difficulty is shown next to the title. This guidance is

only an estimate, and is based on many, possibly incorrect, assumptions. Take it as only

one, of many, factors contributing to your estimate of your own team’s ability to solve

the problem. Remember: Your mileage may vary!

 (☺☺☺☺☺) Very Challenging

 (☺☺☺☺) Challenging

 (☺☺☺) Nuances or subtlety, or upper level math/algo/problem solving

 (☺☺) Some nuances or library or algorithmic knowledge required

 (☺) Straight-forward, few if any nuances

The hypothetical examples below illustrate the notation for a straight-forward problem,

Problem Y, and a very challenging problem, Problem Z:

Problem Y: Easy points! (☺)

Problem Z: Badge of Honor, e.g. Killer (☺☺☺☺☺)

2

Problem A: A Duty for the Bridges (☺ ½)

Medieval castles were fortresses made of heavy stone, shuttered with

heavy wood, and protected by deep moats crossable only via certain

narrow, heavily guarded bridges. Inside of their great walls, the royals

enjoyed all of the luxuries of the Court, including the best of jesters,

crochet, and scotch.

But, the King’s Court also mediated disputes and managed the

business of the kingdom. Those with business before the Court enter

the castle via the designated bridge. And, much like many bridges of

today, it was a toll bridge. Jesters, crochet, and scotch are not free, to

be sure.

And, since there really is no fair way to tax working people to pay for

the luxury of the rich, no such attempt was made. The taxation system

was arbitrary. All those with business before the court were assessed a

duty to cross the bridge. A duty of one dinar per bridge crossing was

imposed for each letter of a person’s name. Because of the Court’s generosity to itself, it is important to

note that the duty is assessed both entering and leaving the castle. In a small act of generosity, the court

only charges for letters – not spaces, hyphens, or other punctuation or adornments.

Your job, given a list of names of petitioners who visited the Court on a particular day, is to determine

the total dinars collected for their bridge crossings.

Input

The first line of the input will contain an integer n (1 ≤ n ≤ 100) which represents the number of persons

visiting the Court on a particular day. Following that there will be n lines of input, each of which

contains a non-empty string no longer than 80 characters, representing a person’s name.

Output

For the given input, your program should output a single number, the total number of dinars collected

from the provided list of people, each of who entered and exited the castle via the bridge.

Sample Input
2

Mike

Jane Smith

Sample Output
26

3

Problem B: Cold-Blooded Carry (☺☺ ½)

In magical times, dragons served as modern-day tanks. Because of

their breadth of fire, they were a nearly invincible mode of

transportation. Any enemy could simply be blasted away.

But, unfortunately, dragons are cold-blooded. Their body

temperature adjusts to match that of their environment. Should they

become either too hot or too cold, well, let’s just say that they aren’t

such good transportation any more. In particular, the temperature of

the dragon must remain between 89 F and 99 F, inclusive.

As a result, dragon-riding warriors and royalty need to be thoughtful

of their otherwise invincible friends. The riders must ensure that they

adjust their speed of travel across sunny and shady areas to maintain

the proper temperature of the dragon throughout the journey.

A rider might need to speed up when riding through certain areas to minimize the impact they have on

the dragon’s temperature, e.g. speed up in a shady area to minimize heat loss. Similarly, the rider might

need to slow the dragon down while crossing an area in order to maximize its impact, e.g. slow down in

a sunny area to gain more heat. A dragon’s body temperature increases one degree per hour when in a

SUNNY area and loses one degree per hour when in a SHADY area. A dragon can slow down or rest, but

it cannot travel faster than 100 miles per hour.

Your task is to determine the minimum time, to the nearest whole hour (any fraction of an hour rounds

up) necessary to complete the journey, without over heating or under heating the dragon. If it is not

possible to complete the journey while protecting the health of the dragon, you should determine that it

is impossible.

Input

The first line of the input contains a positive integer, n, that represents the number of test cases

contained within the input. The n test cases immediately follow this line.

The first line of each test case contains two positive integers: s (1 ≤ s ≤ 500,000) which represents the

number of sections of the journey and (89 ≤ t ≤ 99), which represents the starting temperature of the

dragon. Each line of the test case describes a segment and contains either SUNNY or SHADY, followed

by a positive integer representing the length of the segment in miles. The first segment begins at position

0. Each subsequent segment begins where the prior segment ended.

Description: “SHADY 100” “SUNNY 200” “SUNNY 100” “SHADY 100”

• • • • •

Mile Marker: 0 100 300 400 500

4

Output

For each test case, your program should output the minimum number of hours, rounding up to the

nearest hour), necessary to complete the journey without over heating or under heating the dragon. If it

is not possible to complete the journey while protecting the health of the dragon, the program should

output IMPOSSIBLE for the test case in place of a number.

Sample Input
2

4 98

SHADY 100

SUNNY 200

SUNNY 100

SHADY 100

2 98

SUNNY 100

SUNNY 200

Sample Output
6

IMPOSSIBLE

5

Problem C: Magical Quilt (☺☺☺☺ ½)

In modern times quilts are often sewn and given as gifts as a sign of

love and thoughtfulness. They also provide soft, cuddly warmth on cool

days and can be designed to compliment and enrich any décor. But, in

times gone by, properly constructed quilts were thought to bring their

holder magical powers.

In order to have magical powers, a quilt must be stuffed with down

feathers and be designed in a grid pattern of properly arranged GOLD,

SILVER, and PLATINUM squares. PLATINUM squares give the quilt

magic, SILVER squares channel the power to the holder of the quilt,

and GOLD squares look really pretty.

The quilt must be exactly 6x6. It must never have more than three

GOLD squares touching each other vertically or horizontally, or they

interfere with each other preventing the quilt from conveying any

powers. The same is true of SILVER squares. No interference is created

diagonally, and no matter how the quilt is folded, wrap-around is not a concern.

 Example Input Illegal Tiling Legal Tiling

Input
The first line of the input contains a positive integer, n, that represents the number of test cases

contained within the input. The n test cases immediately follow this line.

The first line of each test case contains one non-negative integer: p (0 ≤ p ≤ 36) which represents the

total number of platinum squares in the quilt. The next p lines of each test case contain the row and

column for each p, where rows and columns are number 0…5.

Output
For each test case, you should print a single line containing the maximum magic, a.k.a. number of gold

squares, obtainable with the described configuration of platinum squares.

 P P

P P

P P P

 P P

 P P P

P P

G G G P P S

P S G P S S

P G S P P S

G S S S P G

G P P S G P

P S S P G S

S G S P P S

P G S P G S

P S G P P G

S S P G P S

G P P G S P

P S S P G G

6

Sample input
1
34
0 0
0 1
0 2
0 3
0 4
0 5
1 0
1 1
1 2
1 3
1 4
1 5
2 0
2 1
2 2
2 3
2 4
2 5
3 0
3 1
3 2
3 3
3 4
3 5
4 0
4 1
4 2
4 3
4 4
4 5
5 0
5 1
5 2
5 3

Sample output
2

7

Problem D: Sacred Scrolls (☺☺)

A secret room was recently discovered in the ruins of an ancient monastery.

It contains a large quantity of scrolls held as sacred by the monks who once

formed the community. Because there are so many scrolls, historians will

need to prioritize their study of the documents. In order to do this, they

decide to study the most sacred scrolls before the least sacred scrolls.

The sacredness of a scroll is the maximum sacredness of any line of text

within the scroll. A line of text is not sacred (has a sacredness of 0), unless a

single character composes more than half of the line, e.g. “aba” is sacred,

but “cdb” is not. If a line is sacred, its sacredness is equivalent to the

number of instances of the dominant characters in the string. The dominant

is exactly the single character in the majority (not plurality), within a string.

For example, aadabaabb has a sacredness of 5. The ancient language uses

only the characters a-z.

Your task, is to compute the sacredness of a text given its lines.

Input

The first line of the input will contain an integer n (1 ≤ n ≤ 100) which represents the number of test

cases, a.k.a. scrolls. The first line of each test case contains l lines, where (l > 0). The subsequent l lines

within each test case contain the text of each line. Each line will have at most 100 characters.

Output

For each test case, you should print out a single number representing the sacredness of the scroll.

Sample Input
2

4

abbadabba

babaabbab

bbbababab

abca

1

abcdefggh

Sample Output
6

0

8

Problem E: Transparent Wood (☺☺☺☺)

A powerful storm has passed through your village, destroying all

of the windows. Unfortunately, it will take the glassmakers

months or years to make enough glass for everyone to repair their

windows. Rather than wait for glass, which proved it’s self to be

too fragile, anyway, you visit the village magician.

She provides you with rectangular sheets of transparent wood, but

cautioned that if they are cut or overlapped, they will be

weakened and fail within the month. You hire a handyman to

install your newly purchased transparent wood windows.

But, before you pay, you want to ensure that the installation was proper and did not overlap any sheets

or leave any gaps between or around them. So, you write a program that, given the dimensions of the

window opening, the dimensions of each sheet, and the coordinates of each sheet’s upper left corner,

verifies that the installation meets the requirements.

 (0,0) (0,0)

Input

The input includes multiple test cases. The first line of the input contains a single non-negative integer

indicating the number of test cases to follow. Each test case describes the opening and the sheets of

wood used. The first line of each test case contains the three non-negative integers, o, h, and s, where the

first number, o, indicated the width of the opening. The second number, h, indicates the height of the

opening. And, the third number, s, indicates the total number of sheets of transparent wood used to over

the opening. The test case is further described by s lines, each of which contains four non-negative

integers describing a sheet of wood. The first two, x, and y, are its coordinates, where the origin is the

upper-left corner of the opening. The next two numbers on the line are sw and sh, the width of the sheet

and the height of the sheet, respectively. There will be fewer than 100,000 sheets of transparent wood.

The o,h,sw, and sh will be between 1 and 10,000,000. x and y will be between 0 and 10,000,000.

Overlap

Gap

Gap

9

Output

The output consists of one line for each test case PAY or WITHHOLD. The output should be PAY, if the

window is installed correctly and the installer should be paid, and WITHHOLD, otherwise.

Sample input
2

8 10 3

0 0 8 5

0 5 4 5

4 5 4 5

8 10 3

0 0 8 5

0 5 3 5

4 5 4 5

Sample output
PAY

WITHHOLD

10

Problem F: Boxed! (☺☺☺ ½)

Okay. Admit it. You’ve got an eBay habit. And, it has left you with a stack

of empty shipping boxes in your closet. You’d like to pack the boxes within

each other to get them out of the way, leaving you with fewer visible boxes.

This could be a really hard problem, but all of the boxes have square

bottoms, e.g. the width and length of the bottom are the same. And, you

are only interested in stacking one box into another – you do not want to

place two or more boxes side by side or on top of each other, etc, within the

same box. The goal is simple box-into-box packing.

Given a list of boxes, described by the widths and lengths of the base and

the height of the box, please determine how many boxes will be left over

after nesting as many boxes as possible into a single box. A box can fit into

another box if it is strictly smaller in all dimensions. Boxes cannot be rotated.

Input

The input will consist of multiple test cases. The first line of the input file contains a single non-negative

integer, n, that indicates the total number of test cases present within the input. The test cases follow on

the subsequent lines. Each test cases begins with a line containing a single non-negative number, b,

indicating the number of boxes to be described within the test case. The subsequent b lines contain a

description of a box. Each line consists of three integers, w (0 < w ≤ 100), l (0 <l ≤ 100), and h (0 <h≤

100), where w and l are guaranteed to be the equal and represent the dimensions of the bottom of the box

and h represents its height. There will be fewer than 10,000 boxes.

Output

For each test case, you should print a single line. It should be a single integer indicating the total number

of left over boxes after filling one box with as many other boxes as is possible.

Sample input
2

3

4 4 3

3 3 2

2 2 1

5

4 4 4

4 4 3

4 4 2

3 3 2

2 2 1

Sample output
0

2

11

Problem G: Revenge of the Boxes (☺☺☺)

In your move from one building to another, you boxed up your office.

The process was a bit haphazard. In general, you put small things, like

paperclips into small boxes, then larger things like staplers and tape

dispensers into larger boxes. And, yet larger things, like the telephone

and stereo into yet larger boxes. Then, you took all of the boxes and

shoved them into each other, as space allowed, sealed them all up, and

called it a mission accomplished.

Unpacking is a lot of work. And, well, time is always short. So,

you’ve never quite gotten around to it. Instead you just sift through

the boxes to get things when you need them. But, to save space, you

never take one box out of another. Instead, you just open one box,

reach into it to get to another, open that, to get to another, and repeat until you get into the intended box.

Given information about how the boxes are packaged, this question asks you how many boxes you’ll

need to reach through or into to get into a specific one of them.

Input

The first line of the input will contain a non-negative integer n which represents the number of test cases

present in the input. The input cases follow. Each test case begins with a line containing a non-negative

integer b (1 <= b <= 10,000), which represents the number of boxes in the test case, and a string t, which

identifies the target box using a label as described below. Following this line, each test case contains one

line per box. A line contains two box labels such that a line reading “BoxA BoxB” is interpreted as

“BoxA is directly inside of BoxB.” The outer-most box is described as being within itself, e.g., “BoxA

BoxA”. Box labels are composed only of alphabetical characters and cannot exceed 35 characters in

length. The input given will always represent a valid nesting of boxes.

Output

For each test case, you should print out a single line containing a single number: The number of boxes

through or into which you need to reach to get into the target box.

A

B
C

D F

E

G

H
Reaching into “Box G”

requires reaching through or

into boxes E, I, and G.

I

12

Sample Input
2

9 G

A B

B C

C E

D C

E E

F E

G I

H I

I E

5 E

A B

B C

C E

D C

E E

Sample Output
3

1

13

Problem H: Trees (☺☺☺☺☺)

Given a rooted binary tree where each vertex is numbered we can construct a

sequence of numbers as follows:

Construct Sequence(v):

 Add v to the sequence

 if(v has one child)

 ConstructSequence(v's child)

 if(v has two children)

 ConstructSequence(v's child with smallest label)

 ConstructSequence(v's child with largest label)

Calling ConstructSequence(root) will generate the sequence of numbers for the tree with the given

vertex as root. For example on the following tree the sequence would be: 1,2,3,6,4,5,7

You will be given a sequence of numbers, out of all trees such that ConstructSequence generates the

given sequence, and returns the height of the tree with minimum height. The height of a tree is the

longest distance from a vertex to the root. For example of the height of the example tree is 3 (the path

from the root to vertex 3 is the distance 3).

Input

The first line of the input will contain T the number of test cases. Each test case starts with N (between 1

and 250), the length of the sequence, on a line by itself. The next line will contain N space separated

integers that represent the sequence. No number will occur more than once in the sequence. Each

number in the sequence will be between 1 and 1000.

Output

For each test case output the minimum height on a line by itself.

14

Sample Input
3

7

1 2 3 6 4 5 7

3

1 2 3

3

3 2 1

Sample Output
2

1

2

Below is a picture of a tree of height 2 which generates the sequence given in the first test case

1

2 4

3 6 5 7

15

Problem I: Blackboards (☺☺)

Andrew Carnegie has come back from the dead to give a lecture at CMU.

The lecture is very important so he wants everything to go off perfectly.

The room he is in has N sliding blackboards numbered 1 through N. Each

blackboard is on a separate track. Each blackboard can slide to an integer

height between 1 and H inclusive. If two blackboards are at the same

height the lower numbered one obscures the higher numbered one.

Andrew Carnegie has carefully written his notes over all N blackboards.

At some point in time during the lecture Mr. Carnegie wants some subset of the boards viewable. A

board is viewable if it is the lowest numbered board at its height. Mr. Carnegie wants to know whether

the boards can be slid such that all of the boards in a specific subset are viewable.

Input

The first line of the input contains an integer T that represents the number of test cases. The first line of

each test case contains three non-negative integers: N, H, and S. N is the number of sliding blackboards,

it will be between 1 and 1,000,000,000. H is the maximum height a blackboard can be placed at it will

be an integer between 1 and 1000. S is the size of the subset that Mr. Carnegie wants to show. S will be

between 1 and 1000. The next line will contain S integers representing the subset of the boards that

Andrew Carnegie wants to show. These numbers will be between 1 and N inclusive, and all of the

numbers will be distinct.

Output

For each test case, you should print out a single line. If it is possible to make all of the boards in the

subset visible output “YES”, otherwise output “NO”.

Sample Input
2

3 2 2

1 2

3 2 2

2 3

Sample Output
YES

NO

